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Abstract of the Dissertation

Search for jet interactions with quark-gluon
plasma

by

Chin-Hao Chen

Doctor of Philosophy

in

Physics

Stony Brook University

2011

A hot, dense QCD medium is created in heavy ion collisions at
the Relativistic Heavy Ion Collider at Brookhaven National Lab-
oratory. This new type of matter is opaque to energetic partons,
which suffer a strong energy loss in the medium. Two particle
correlations are a powerful tool to study the jet properties in the
medium and provide information about the energy loss mechanism
and jet-medium interactions. When triggering on high pT particles,
the away-side shape depends strongly on the pT of the associated
particles.

In this analysis, we present the inclusive photon-hadron two
particle azimuthal correlations measured in Au+Au collisions at√
sNN = 200 GeV by PHENIX experiment. In order to study

jet-medium interactions, we focus on intermediate pT , and sub-
tract particle pairs from the underlying event. Jet-like correlations
appear modified in central Au+Au compared to p+p, in both the
trigger and opposing jet. The trigger jet is elongated in pseudo-
rapidity (the “ridge”), while the opposing jet shows a double peak
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structure (”head” and “shoulder”). We decompose the structures
in ∆η and ∆φ to disentangle contributions from the medium and
the punch-through and trigger jets. Upon correcting the under-
lying event for elliptic flow, the ridge is observed for associated
particle pT below 3 GeV/c; it is broad in rapidity and narrow in
∆φ. The away side correlated particle yield is enhanced in central
collisions. The yield of particles in the shoulder grows with cen-
trality while the away side punch-through jet is suppressed. Re-
markably, the ridge closely resembles the shoulder in the centrality
dependence of particle yield and spectra.

There has been great debate about the origin of the ridge and
shoulder. A favored explanation is that the structure is due to
features of the collective flow of particles in the underlying event,
particularly the fluctuation-driven triangular flow, quantified by
the third Fourier component, v3. We measure higher order Fourier
harmonics in two ways, and use the results to give the shape of
particle correlations in the underlying event. We decompose the
power spectrum for the medium and for jets measured in p+p
collisions.

When including the higher harmonics of the collective flow (v3,
v4) in the shape of the underlying events in two particle correla-
tions, the ridge and shoulder no longer exist after subtraction. The
jet function in Au+Au looks like p+p in which the away side jet
is suppressed and broadened. There is also a pedestal-like struc-
ture in the jet function. Since the higher harmonics only change
the shape of the underlying background, the pedestal is simply the
redistribution of the ridge and shoulder particle yields.

In conclusion, when jets pass through the medium, the away
side jet is suppressed and the shape is broadened. This also brings
out extra particles with spectra slightly harder than the medium,
but softer than jet fragments. These are probably from the jet-
medium interaction.
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Chapter 1

Physics Introduction and Motivation

1.1 Quantum Chromodynamics

All stable matter in the current universe consists of protons and neutrons.
Protons and neutrons combined together form all the elements we see today. In
the viewpoint of the Standard Model of particle physics, protons and neutrons
are not the fundamental building blocks. Instead, quarks and gluons are the
most fundamental building blocks. Protons and neutrons are baryons, which
consist of three quarks. There are six kinds of quarks: up (u), down (d),
strange (s), charm (c), bottom (b), and top (t). Quarks have color, which is a
quantum number: red (R), green (G), and blue (B). The interaction between
quarks is mediated by exchanging gluons. The theory used to describe quark
and gluons is called Quantum Chromodynamics (QCD).

The strength of the interaction between quarks is described by the coupling
constant of the strong interaction, αs. The strength of αs as a function of the
momentum transfer Q of the interaction is shown in Fig. 1.1 [1, 2]. The
horizontal axis, Q, is the momentum exchange. Large Q is reached in the high
energy interactions. At the same time, high energy also corresponds to short
distance.

The running of the coupling constant, αs, with increasing Q leads to the
phenomenon of “asymptotic freedom” [3, 4]. When the two quarks are sep-
arated by a large distance, the interaction strength will increase and tend to
bring the two quarks together, which lowers the energy of the system. This is
why quarks are bound inside the nucleon.
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Figure 1.1: The QCD coupling constant, αs, as a function of the momentum
exchange, Q. [1, 2].
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1.2 The Quark Gluon Plasma

From Fig. 1.1, we know that the strength of the interaction between quarks
varies with energy. One might imagine that when the coupling constant αs is
small enough, quarks and gluons can move freely as gas.

There are two methods to achieve the condition of small αs. First, one
can “heat up” the nucleon. Second, one can reduce the distance between the
quarks, i.e. “squeeze” the nucleon. Both of these conditions can be achieved
by colliding large nuclei at relativistic energies.

QCD predicts a phase transition from hadronic gas to quark gluon plasma.
The calculation from lattice QCD, as shown in Fig. 1.2 [5], indicates that with
the sudden increase of the ratio of the energy density over the fourth power
of the temperature, there is indeed a phase transition when temperature, T,
is around the critical temperature, Tc. The high temperature phase is known
as “quark gluon plasma” [6, 7]

When T < TC , and by assuming c = h̄ = kB = 1, the energy density, ε (in
units of [GeV]4), of the massless pion gas is given in Eq. 1.1

επ = 3dπ
π2

90
T 4 (1.1)

where dπ is the number of degrees of freedom of the pions, which can be
calculated by Eq. 1.2:

dπ = N2
f − 1 (1.2)

In the quark–gluon–plasma phase, we have the energy density

εQGP = 3dQGP
π2

90
T 4 +B (1.3)

Here, dQGP is number of degrees of freedom in the QGP phase, which is written
as

dQGP = dg +
7

8
dq (1.4)

dg = 2spin × (N2
C − 1) (1.5)

dq = 2spin × 2qq̄ ×NC ×Nf (1.6)

For the case of three flavors of massless quarks, or Nf = 3, we have dπ =
32−1 = 8, dg = 2× (32−1) = 16, dq = 2×2×3×3 = 36, dQGP = 8+ 7

8
×36 =

47.5
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So from hadron gas phase to QGP phase, there is a sudden increase of the
number of degrees of freedom. This corresponds to the jump of ε/T 4 at T =
TC in Fig. 1.2. Note that this is true for all three assumptions of quark type
and masses in the figure.

For T > TC , ε/T
4 is approximately constant with temperature. In Fig. 1.2,

the values of the Stefan–Boltzmann limit, εSB/T
4, which corresponds to the

noninteracting gluon gas are also plotted. But ε/T 4 is below the energy density
by assuming that the quarks and gluons are non–interacting, or the Boltzmann
limit by about 20%. This is a hint that within quark–gluon plasma, quarks
and gluons are strongly interacting.
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Figure 1.2: Energy density, ε, as a function of temperature from Lattice
QCD calculations [5]. εSB/T

4 represent the Stefan–Boltzmann limit of non–
interacting gluon gas.

1.3 Different Stages of Heavy Ion Collisions

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab
(BNL) collides gold nuclei and various nucleus systems at center of mass ener-
gies up to 200 GeV per nucleon pair (

√
sNN = 200 GeV). Under this condition,
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a new type of hot dense matter, the quark–gluon plasma, is created. Here we
describe the time history of the such collisions.

1.3.1 0 < τ < τ0, Pre–equilibrium and Thermalization

At the top RHIC energy, due to Lorentz contraction, the nuclei will have
longitudinal size 2R/γcm, where γcm = Ecm/2mn ≈ (200 GeV)/(2 GeV) ≈
100, where mn is the nucleon mass. When the two nuclei collide, the resulting
collisions of constituent partons produce many semi–hard partons, or mini–
jets. A lot of entropy is also created at this stage. These mini–jets form an
equilibrated parton plasma and interact with other partons. At this stage, local
thermalization is achieved and creates the hydrodynamical initial conditions
for τ > τ0, where τ0 is the characteristic proper time of the QGP. At RHIC,
τ0 is less than 1 fm/c under perfect fluid hydrodynamical models [8].

1.3.2 τ0 < τ < τf , Hydrodynamical Evolution and Freeze–

out

At τ0 the system is in local thermal equilibrium. The system expands both
in longitudinal and transverse directions. This longitudinal expansion expands
the volume of the system in the z direction (beam direction) and this process
cools the system and decreases its temperature. When the temperature drops
to the critical temperature, Tc, there will be a phase transition, the system
will become a hot dense hadronic gas. After the phase transition, the hadron
gas will still expand.

The relativistic hydrodynamics is used to describe the expansion of the
system from the time that local thermal equilibrium is reached in the quark
gluon plasma phase until freeze-out. . Under relativistic hydrodynamics, the
energy–momentum is conserved, that is

∂µ 〈T µν〉 = 0, (1.7)

where T µν is the energy–momentum tensor of the fluid. By assuming the
system is a perfect fluid, the system can be described by the energy density,
ε, and the local pressure, P, and T µν can be written as

T µν(x) =









ε(x) 0 0 0
0 P (x) 0 0
0 0 P (x) 0
0 0 0 P (x)









(1.8)
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The energy density, ε and the local pressure, p, are linked by Equation of State,
EoS. In the fluid, the number of baryon number is also conserved, where

∂µ 〈jµB〉 = 0. (1.9)

and the baryon number current, jµB is given by

jµB(x) = nB(x)u
µ(x) (1.10)

where nB(x) is the baryon number density and uµ(x) is the four velocity. The
evolution can then be calculated with proper initial conditions, starting from
τ = τ0 to τ = τf , which is the freeze–out time, when the hadronic plasma stop
interacting with each other.

1.3.3 τf < τ , Freeze–out and Post–equilibrium

The freeze-out of the hadronic plasma happens at this stage, τf < τ . The
freeze–out is defined as the time when local thermalization breaks, or the mean
free path of the hadrons is larger than the size of the system. The hadron gas
is still very dense and the hadrons still interact with each other in a non-
equilibrium way, where the system may be described by transport theories,
such as UrQMD [9, 10].

1.4 Definition of terms

In order to describe the heavy ion collisions, we define the following terms.
The transverse momentum of the particle, pT , is the momentum in the

transverse plane, which is perpendicular to the beam direction. The magnitude
of pT is pT = |p| sin θ, where p is the magnitude of the momentum, θ is the angle
between the direction of the particle and the beam direction. The longitudinal
momentum, pL is the momentum along the beam direction.

The direction of the particle is typically described by two angles, the az-
imuthal angle on the transverse plane φ and θ. The pseudorapidity, η, is
defined as η = − ln[tan(θ/2)], which is often used to describe the direction of
θ.

The geometry in heavy ion collisions is an important parameter, which
describe how much matter is colliding. The geometry for head–on collisions
and peripheral collisions is very different. When two nuclei collide, the nucleons
which participate the collision are called “participants”, and the rest are called
“spectators”. These participants form the collision region. The collisions are
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typically categorized by different “centralities”. Centrality is defined by the
total nucei-nuclei inelastic cross section, which is strongly correlated with the
number of participants. The 5% events which have the largest total inelastic
cross section is defined as centrality of 0–5%. Experimentally, centrality is
determined by the density of the charged particles produced from the collisions,
or dN ch/dη. For example, the centrality of 0–5% events produces the highest
multiplicity.

The Glauber model [11] has been used to calculate the colliding geom-
etry. The Glauber model breaks the nuclei–nuclei interaction into numerous
nucleon–nucleon interactions. It assumes the nucleon moves in a straight tra-
jectory and not deflected after the collisions. Using the Glauber model, we can
calculate Npart for the average number of participant of the certain central-
ity. The number of binary collisions, Ncoll, is also used extensively to describe
heavy ion collisions. When the two nuclei collide, many partons within col-
liding region may interact. The total number of binary collisions is Ncoll,
which can also be estimated with a Glauber simulation, is used extensively to
describe heavy ion collisions.

1.5 General Properties of QGP

At RHIC, quark–gluon plasma is routinely created in central Au+Au col-
lisions. There are several interesting properties of this new type of matter.

1.5.1 Temperature of QGP

One of the most important questions at RHIC has been the temperature
achieved. This has been determined by measuring thermal radiation. When
the quark–gluon plasma is produced in heavy ion collisions, it will radiate
thermal photons. By measuring the spectra of the thermal photons, we can
extract the temperature of the medium.

The hot quark–gluon–plasma should emit thermal radiation [12]. The
partonic phase is predicted to be the major source of direct photons at 1 <
pT < 3 GeV/c [13]. But at this pT range, there is a large background of
hadronic decay photons. Since any photon production can also emit virtual
photons, which decay to electron-positron pairs, one can measure the virtual
photons via di-electrons and require the mass of the electron pairs to be larger
than the mass of the π0 to suppress the background. PHENIX has measured
low mass di–electrons in Au+Au and p+p collisions (me+e− < 0.3 GeV/c2

and 1 < pT < 5 GeV/c) [14]. After removing all the pairs from hadronic
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decays, an excess yield is found in central Au+Au collisions compared to p+p,
as shown in Fig. 1.3.

Fig. 1.3 shows the spectra of di–electrons which come from direct photons
in p+p and Au+Au collisions. The spectrum from p+p is fit with a mod-
ified power law function [App(1 + p2T/b)

−n]. The same di–electron spectrum
is measured in different centralities in Au+Au and compared with the p+p
spectrum scaled by the total inelastic nucleus-nucleus cross section. An excess
yield for 1 < pT < 3 GeV/c is found in central Au+Au collisions compared to
p+p collisions. The low mass di–electrons excess in Au+Au is interpreted as
coming from thermal radiation photons produced by the QGP. After fitting
an exponential function, Ae−pT /T , to the spectra of the excess, or the thermal
radiation, the slope of the exponential is extracted as T = 221± 19stat± 19syst

MeV. If the source of this excess is from thermal photons, the inverse slope, T,
is related to the initial temperature, Tini. From hydrodynamical calculations,
Tini is 1.5 to 3 times T due to the space–time evolution of the fireball [15].
Several hydrodynamical calculations can reproduce the central Au+Au data
within a factor of 2. These models were Tini = 300−600 MeV, depending upon
which thermalization time is assumed. τ0 ranges from τ0 = 0.6−1.5 fm/c [16].
From Lattice QCD, the critical temperature of the QGP is TC = 170 MeV [17].
This measurement clearly shows that the Tini of the medium is above TC , and
we have indeed created quark–gluon plasma at RHIC.

1.5.2 Elliptic Flow

When two nuclei collide, most of the time the two nuclei do not overlap
completely, but producing an almond–shape collision zone as shown in Fig. 1.4.
The plane which connects the centers of the two nuclei is called the reaction
plane, along the direction of the impact parameter of the collision. In order to
study the spatial anisotropy of the collision, the particle azimuthal distribu-
tion, dN/d(φ− ψ) is measured with respect with the direction of the reaction
plane (ψ). This distribution can be expanded as a Fourier series in φ:

dN

d(φ− ψ)
∝ 1 +

∑

(2vn cos n(φ− ψn)) (1.11)

The elliptic flow, defined as the second Fourier coefficient, v2, of the par-
ticle distribution, is used to describe the azimuthal anisotropy of the particle
distribution and has been measured extensively and precisely [18, 19]. Fig. 1.5
shows the v2 and v4 measured with respect to the second event plane, ψ2, which
is the estimation of the reaction plane. If the QGP is weakly interacting, the
whole system should expand like a gas, i. e. homogeneously in all directions.
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Figure 1.4: When two nuclei collide, the colliding area has an almond–like
shape.

The large, non zero v2 in Fig. 1.5 indicates that the medium expands faster in
the short direction (in–plane) and slower in the long direction (out–of–plane).
This implies that the system has a large pressure gradient and experiences a
fast thermalization. More detail will be discussed in Chapter 5 and Chapter
7.

1.5.3 Jet Quenching

When two nucleon collides, the partons within the nucleon may experience
a hard scattering, which can be illustrated by Fig. 1.6. Fig. 1.6 shows two
high energy protons collides (blue arrows). During the collision, the partons
in protons scattered into a pair of high energy partons (red arrows) in opposite
directions due to conservation of momentum. The partons will hadronized into
high pT particles or fragment into a shower of particles in a small cone in φ
and η, which become jets. In heavy ion collisions, this hard process happened
in the early stage of the collisions, so the energetic parton will interact with
the quark gluon plasma before the parton leaves the medium.

A key question in heavy ion collisions is how partons interact with the
medium as they travel through. By measuring the properties of the high pT
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Figure 1.5: v2 and v4 of inclusive charged hadrons vs pT of several centralities
[19].
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Figure 1.6: Hard scattering in a proton-proton collision. The blue arrows are
the direction of the protons, the red arrows are the outgoing partons. The
upper out going parton fragment into a jet.
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particles or jets, we can have the information on how partons interact with the
quark gluon plasma. By measuring the spectra of high pT hadrons in Au+Au
collisions, where the medium is produced, and comparing with p+p collisions,
where there is no medium produced, we can gain some insight on the effect of
the medium and the study the parton–medium interaction.

One parameter used to quantify the medium modification is the medium
modification factor, RAA, which is defined in Eq. 1.12:

RAA(pT ) =
d2NAuAu/dpTdη

Ncolld2Npp/dpTdη
(1.12)

where d2N/dpTdη is the particle spectrum in Au+Au/p+p, and Ncoll is the
total number of binary nucleon–nucleon collisions in Au+Au at a given impact
parameter. If the particle spectrum in Au+Au is simply given by the spectrum
in p+p scaled by the number of binary collisions in Au+Au, then RAA should
be equal to 1. RAA < 1 means the spectra in Au+Au are suppressed compared
to p+p.

PHENIX has measured π0 spectra in Au+Au in various centralities and
over a broad range of pT [20]. The results are shown in Fig. 1.7. At pT > 5
GeV/c, RAA in central collisions (0–10%) is about 0.2, which means the π0

yields are suppressed by a factor of 5. This is strong evidence that partons are
losing energy in the medium. At higher pT , RAA shows a weak rising trend
with pT . In Fig. 1.8, RAA at pT > 5 GeV/c shows that RAA decreases with
increasing Npart , i.e. from peripheral to central collisions. This indicates that
larger medium volume results in larger suppression.

1.6 Two Particle Correlations

1.6.1 The Definition of Two Particle Correlations

In section 1.5.3, hard partons will produce high pT particles or jets. Jets are
important probes for understanding the properties of the quark–gluon plasma.
But in central heavy ion collisions, thousands of particles are produced, mak-
ing jet finding an extremely difficult task. Instead, two particle azimuthal
correlations are used as a proxy for studying properties of jets in the medium.

This correlation function method is a statistical method. When high energy
partons are produced in hard collisions, they will fragment into hadrons which
are confined to a cone of small ∆φ and ∆η. So the idea of two particle
correlations is to select a high pT particle, known as the trigger particle, which
is supposed to be fragment from a jet and roughly in the direction of the
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original parton, and correlate it with lower pT associated particles in φ or η.
When the difference of the azimuthal angle between the trigger and associated
particles is ∆φ ≈ 0, this means both particles arise from the same jet. If
∆φ ≈ π, this means the associated particle is coming from the opposing jet,
which is due to the conservation of momentum.

A typical correlation function looks like Fig. 1.9. The two particle cor-
relation function has two components: contributions from jet pairs and the
underlying event. In order to extract the jet signal, we need to determine the
level and also the shape of the underlying event background. After the shape
and the level are properly determined, we can subtract the background and
extract the jet signal. The peak at ∆φ = 0 is the near side jet, which is the jet
where the trigger particle comes from. The peak at ∆φ = π is the opposing
jet. So with two particle correlations, we can study the properties of dijet
events.

1.6.2 High pT Correlations

PHENIX has performed extensive studies with two–particle correlations
[21, 22, 23]. Fig. 1.10 [24] shows the π0–h correlations in central Au+Au
collisions. When both particles are at high pT , such as 7–9 GeV/c for trigger
particles, and 3–5 GeV/c associated particles, the near side (∆φ = 0) in
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Figure 1.9: A typical correlation function. On the top are the jet pairs. On
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Au+Au (solid circles) behaves just like p+p (empty circles). However, on the
away side (∆φ = π), the jet like structure in Au+Au is significantly suppressed
compared to p+p, which is the evidence of jet quenching inside the medium at
high pT . At low partner pT , the away side jet is modified and comprises more
particle than p+p, as shown in upper left of Fig. 1.10. From the two–particle
correlations shown in Fig. 1.10, we can clearly see that the suppression happens
when the away side jet goes through the medium. By selecting the high pT
particle as the trigger, we are biased by selecting the trigger particles emitted
from the surface, which suffers no or little energy loss. But the opposing jet
had to pass through the medium, suffering energy loss. This is known as
trigger bias.

1.6.3 Intermediate pT correlations

When the momentum range for both trigger and associated particles is
decreased, interesting features comes out. Fig. 1.11 [22] shows the jet function
from Au+Au and Cu+Cu collisions at various centralities. In peripheral colli-
sions, the correlation function looks like unmodified p+p, which shows peaks
at 0 and π in ∆φ. In central collisions, we see the near side peak still sits at
∆φ = 0, but on the away side, instead of a peak at ∆φ = π, a dip appears,
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and the peak shifts to ∆φ ≈ 2. This strange shape is found in different col-
liding systems and different colliding energies, and the position of the away
side peak, parametrized by D, is the same for all Npart > 50. Fig. 1.12 [22]
summarizes the centrality dependence of the peak location, D, at the bottom,
and shows how the peak shape changes on the top panel.
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1.6.4 ∆η–∆φ Correlations

The near side correlation is found to be modified not only in ∆φ, but
also in ∆η, which is defined as η = − ln[tan(θ/2)], where θ is relative to the
beam direction. Fig. 1.13(a) shows the ∆η–∆φ correlation function in central
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Au+Au collisions [25]. Fig. 1.13(b), shows the correlation function in d+Au
collisions, which has no medium effect. Fig. 1.13(a) shows the correlation in
central Au+Au, an enhancement along ∆η at ∆φ ≈ 0 is found. This structure
is called the “ridge”. Together with the cone–like double–peak structure, we
see that the effect of the quark gluon plasma in Au+Au upon jets appears to
be very complicated.

1.7 Motivation for this Dissertation Work

We have performed a study aimed at understanding the exotic structures
seen in two particle correlations in heavy ion events, and using properties of
the ridge in the near side and the double peak structure in the away side to
learn about the response of the quark–gluon plasma to the energy deposited
by fast partons. There are several theoretical interpretations of each struc-
ture, but very few theoretical approaches treat them together. Furthermore,
new insights from higher harmonic Fourier coefficients have also triggered new
interpretations of these structures.

In this analysis, we study the two particle correlations with the PHENIX
detector. First, we extract the ridge and shoulder from the correlation func-
tions and study their centrality and pT dependence. In order to understand
the effects of higher harmonics of the collective flow of the underlying event,
we measured the higher harmonics in correlations of two low pT particles, as
well as for intermediate pT particles, and applied those measurements back
to the background subtraction in the correlation analysis to gain new insights
into the source of the ridge and shoulder structures.
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Chapter 2

Experiment

2.1 RHIC

From Sec. 1.2, we know the way to create the quark-gluon plasma is to
create a high temperature, a high energy density state. In order to achieve this
condition, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory (BNL) [26] accelerates gold nuclei up to 100 GeV per nucleon along
its 2.4 mile ring. When full energy gold nuclei collide, violent interactions
happen. RHIC is capable of colliding various species of nuclei, such as gold,
copper, deuteron and proton at various energies. This makes RHIC a unique
machine to explore the properties of the QGP under different conditions.

These collisions are detected and have been studied extensively by four ded-
icated experiments: BRAHMS [27], PHOBOS [28], STAR [29] and PHENIX [30].

With good particle identification capability, the Broad RAnge Hadron
Magnetic Spectrometers Experiment (BRAHMS) [27] at RHIC was designed
to measure the identified charged hadron spectra over wide pseudorapidity
and transverse momentum range. It consisted of two spectrometers. One at
mid–rapidity was used to measure the low pT particles. The other was at for-
ward rapidity, where the momentum of the particle will be boosted. BRAHMS
experiment started taking data in 2000 and completed data taking in 2006.

The PHOBOS experiment [28] focused on the global properties of the
quark–gluon plasma, such as particle multiplicity distributions and elliptic
flow. PHOBOS placed silicon sensors around the interaction region, allowing
precision measurements of the number of particles and their angular distribu-
tions in Au+Au collisions. The PHOBOS experiment started taking data in
2000 and completed data taking in 2005.

The Solenoidal Tracker at RHIC (STAR) [29] is a multi purpose particle
detector. The main component of STAR is a time projection chamber (TPC)
which can track thousands of particles at the same time. The full azimuth and
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large rapidity acceptance makes it ideal for studying the hadron production
and global properties of the medium.

2.2 PHENIX

PHENIX stands for ”Pioneering High Energy Nuclear Interaction Experi-
ment” [30]. This is the detector used for this work. Fig. 2.1 is the detector
configuration of PHENIX during the 2004 run. There are two central arm
spectrometers covering pseudorapidity |η| < 0.35. These are optimized for
measuring electrons, photons and charged hadrons with great precision. There
are also two muon spectrometers (1.0 < |η| < 2.2), which measure muons in
the forward direction. The analysis in this thesis was done with the central
arms only.

The coordinate system of the PHENIX follows the right hand rule. Z axis is
along the beam direction, where the north is the positive direction. X direction
points to west.

2.2.1 Beam Beam Counter and Zero Degree Calorime-

ter

The Beam–Beam counter (BBC) [31] is used to determine the position and
timing of collisions. The BBC has two identical counters, sitting 144 cm away
from the collision center in the north and south direction, called BBCN and
BBCS. The position of the two BBC is equivalent to 3.0 < |η| < 3.9. Each
BBC consist of two arrays of Cerenkov detectors with quartz radiators and
photomultiplier readouts. Each counter has 64 mesh–dynode photo–multiplier
tubes with 1–inch diameter, with a 3 cm quartz radiator on the head of the
photo–multiplier tube.

When a collision happens, prompt hadrons hit the BBCs. The average
hit time at BBCN and BBCS are TN and TS. The average arrival time, T0,
is calculated for both BBCs. This is used as the start time of the Time of
Flight and to determine the collision vertex position along the beam direction
(ZVTX).

The Zero Degree Calorimeter (ZDC) [32] is used to measure the neutrons
emitted during the heavy ion collisions. ZDCs are located on both sides of the
beam direction and is 18 m away from the collision point. The coincidence
between both ZDCs can be used to for selection of minimum bias events. The
information can also be used to determine the vertex of the collision.
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When combined with the ZDC, the centrality of the events can be deter-
mined. The centrality describes the degree of the overlap of the two nuclei
during the collision. When the two nuclei collide, the nucleons which do not
participate in the collision, or the spectators, will travel at forward angles. The
the neutrons will be detected by ZDC. For central collisions, most nucleons
participate the collision, which means the number of spectators seen at ZDC is
small but the number of prompt hadrons hitting the BBC is large. By sorting
the events with respect to the response of BBC and ZDC, the centrality of the
events can be determined, as shown in Fig. 2.2

Figure 2.2: The correlations between the charge sum in BBC and the energy
in ZDC. The line contains the centrality interval of 5%. The far right region
corresponds to centrality 0–5%.

2.2.2 Central Arm

There are two central spectrometers in PHENIX [33], each covers |η| <
0.35 and π/2 in azimuth, as shown in Fig. 2.1. The central arms have layers
of different detectors. The innermost layer is the drift chamber (DC) [33],
followed by the first layer of pad chamber (PC) [33]. After the pad chamber
is the ring imaging Cherenkov detector (RICH). In east arm, there are time
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expansion chambers (TEC) and time of flight detector (TOF) in the east
arm. In the west arm, there is a second layer of pad chamber behind the
RICH. There are also aerogel detectors in the west arm. Both arms contain
an additional layer of pad chambers in front of the electromagnetic calorimeters
(EMCAL), which is the last layer of the central arm [34]. In this analysis, we
use the information from the drift chamber and pad chamber to determine the
direction and the momentum of the charged tracks and the electromagnetic
calorimeter to measure the energy of the photon.

Drift Chamber

The Drift chambers [33] are two cylindrically shaped detectors with tita-
nium frames, as shown in Fig. 2.3. The locations of the drift chambers are
between 2 to 2.4 m radially from the beam pipe. They extend 2m in the beam
direction in both the east and west arm. Each drift chamber is used to measure
the position of the tracks in the r–φ direction and to provide pT information.

Figure 2.3: Shape of the frame of the drift chamber [33].

The draft chamber is filled with a mixture of 50% argon and 50% ethane
gas. When charged tracks pass through the drift chamber, the gas mixture
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will be ionized. The ionized electrons drift to the anode wires of the drift
chamber and are registered as a hit. Each drift chamber has 20 sectors in the
φ direction. The layout of a sector is shown in the left hand side of Fig. 2.4.
Each sector covers 4.50 in φ and has 6 wire modules, which are X1, U1, V1,
X2, U2 and V2. Each wire module has 4 anode planes, and has 4 cathode
planes.

Figure 2.4: Left: Wire position of a sector of drift chamber. Also a map of
the anode plane. Right: Top view of the wire orientation in a sector [33].

The position of the wire modules are the following. The wires in the X1
and X2 modules lie parallel to the beam direction, and are used to measure
the direction in r–φ precisely. The U1, U2, V1, V2 modules are inclined by
60 degrees with respect to X the modules, as shown in the right hand side of
Fig. 2.4, in order to give information about the z position of the track. For
each anode plane, there are 12 anode wires in the X modules and 4 anode
wires in the U and V modules each. In total, there are about 6500 anode wires
in each of the drift chamber arms.

The set up of each anode plane is shown in the right hand side of Fig. 2.4.
The anode wires are separated by potential wires which have strong electric
potentials. The potential wires separate the sensitive region of each anode
wire. Each anode wire is surrounded by two gate wires and a back wire on
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the opposite side of the gate wires. Gate wires help focus the ionized electrons
drift toward the anode wire and minimize the track sample length to about 3
mm. The back wire has a relatively lower potential, which terminates most of
the drift lines from the other direction and can avoid the left–right ambiguity.

To reconstruct the transverse momentum and direction of the track in the
drift chamber, the technique “combinatorial Hough transform” is used. To
use this method, one looks for tracks hit both the X1 and X2 plane, then the
track can be reconstructed. Those tracks with hits in X1 and X2 modules are
plotted in the x–y plane. The polar angle, φ, is defined from the center to
the intersection of the track with the reference circle with a radius of 220 cm,
which is close to the mid–point of the drift chamber. The inclination of the
track relative to the intersection is defined as α. All these features are shown
in Fig. 2.5. With φ and α, the direction of the track is also defined. Since
the tracks bend in the magnetic field, the inclination angle, α, is proportional
to the inverse of the transverse momentum. With the direction of the track,
specified by φ and α, the pT of the track can be determined.

Figure 2.5: Illustration of the Hough transform parameters for drift chamber
track reconstruction. The outline shows the drift chamber active volume. The
circles represent drift chamber hits along the particle trajectory. [35].
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Pad Chamber

The pad chambers (PC) are three layers of multi–wire proportional cham-
bers [33]. The positions of the pad chambers are shown in Fig. 2.1. The first
layer of pad chambers (PC1) are located right behind the drift chambers. The
second layer of pad chambers (PC2) are in the west arm, behind the RICH
detector. The third layer of pad chambers (PC3) are in both arms, in front of
the electromagnetic calorimeter. The combined information from DC and PC1
provides the z position information of the track, and gives the direction vectors
to the RICH, which is crucial for electron identification. The PC2 and PC3
information is important to reject the particles produced from particle decays,
which do not point back to the collision vertex. They also reject conversion
electrons after or outside the DC acceptance.

Each pad chamber has a similar structure. The vertical structure of the pad
chamber is shown in Fig. 2.6. It consists of a anode layer in the gas chamber
and sandwiched by two cathode layers. One of the cathode layers is made of
solid copper and the other is finely segmented into pixels. When the charged
tracks pass through the chamber, the anode wire will start to avalanche, which
causes charge to be induced on the pixels. This signal is read out through the
readout electronics.

Figure 2.6: Vertical view of the pad chamber [33].

Electromagnetic Calorimeter

Electromagnetic calorimeters (EMCal) are used to measure the energy and
the position of photons and electrons. There are eight sectors of EMCal in the
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central arms of PHENIX [34]. There are two different kinds of EMCal used
in PHENIX. One is lead scintillator (PbSc), which has good timing resolution.
The other is lead glass (PbGl), which has better energy resolution. In the west
arm, there are four sectors of lead scintillator, while in east arm there are two
lead scintillator and two lead glass sectors.

The lead scintillator electromagnetic calorimeter measures the energy by
detecting the shower light coming from the deposited energy from the photons
or the electrons. Lead scintillator calorimeter is a shashlik detector, which uses
layers of lead as absorber and scintillator for calorimetry. When a photon or
electron hits the lead absorber, it showers and is detected by the scintillator.
The radiation length of lead scintillator is 18X0 deep.

Each tower in the PbSc calorimeter contains 66 cells, each consisting of
alternating layers of lead and plastic scintillator, with the edges covered with
aluminum. Four towers are combined into a module, as shown in Fig. 2.7. In
total, there are 15552 towers in the PbSc calorimeter. Every 36 modules will
be walled by stainless steel to form a super module. Every 18 super modules
are grouped as a sector.

Figure 2.7: The structure of the lead scintillator electromagnetic calorime-
ter [34].

The lead glass calorimeter is a Cherenkov radiation detector. When pho-
tons or electrons pass through the calorimeter, Cherenkov radiation will be
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generated and detected. Hadrons with momentum above the Cherenkov thresh-
old also generate Cherenkov radiation, the threshold is 106 MeV/c for pions
and 751 MeV/c for protons. Once the momentum of the hadron is below the
threshold, the radiation light will be absent.

Each PbGl module is 40mm x 40mm x 400mm in size. A group of 6x4
PbGl Modules is a supermodule. For each sector, it has 16x12 supermodules
as shown in Fig. 2.8.

When measuring photons with the calorimeter, we exclude the photon clus-
ters which are identified as hot towers or unresponsive regions of the EMCAL.
Each photon cluster also must pass shower shape cuts to remove showers from
charged particles. The position information from PC3 is used to ensure that
there are no charged particles in the cluster in the calorimeter. Time of flight
of the particle is also used to remove neutral particles, such as neutrons.

Figure 2.8: The structure of the lead glass calorimeter [34].
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Part II

Analysis: correlation function
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Chapter 3

Correlation Function

3.1 Introduction

Two particle azimuthal correlations have provided a lot of insight into how
jets interact with the quark gluon plasma. In p+p collisions the azimuthal
angular difference between two particles, ∆φ, shows jet fragmentation peaks
at ∆φ = 0 when both particles are from the fragmentation of the same jet,
and at ∆φ = π when the particles arise from a back to back di–jet. In Au+Au
collisions, high pT (pT >7GeV/c) back–to–back azimuthal correlations are
suppressed, while the near side jet remains nearly unmodified from p+p col-
lisions [36, 24]. At intermediate transverse momentum (2< pT <5GeV/c),
in the transition region from soft (hydro) to hard (jet fragment), several new
structures have been been observed: the ridge [37, 25] and the shoulder [21, 22].

There have been several physical pictures proposed to explain the produc-
tion of the ridge. Jet–medium interactions may result in a momentum kick
to particles in the bulk medium, boosting their momentum and producing a
correlation with a traversing fast parton [38]. A correlated emission model
describes radiation of soft gluons by a parton penetrating the medium; these
gluons and their resulting hadronic fragments are boosted by longitudinal flow
of the medium [39]. The Glasma model treats the ridge as arising from the
flux tube formed early in the collision; expansion of the quark gluon plasma
along the longitudinal direction elongates the ridge in η [40]. The shoulder
structure has been suggested to arise from passage of a sound wave as the
medium responds to shocks deposited by jet energy loss [41, 42, 43]. However
there is considerable debate as to whether it is possible to observe the resulting
Mach cone–like structure [44, 45].

Until now, analyses of data have typically addressed properties of either
the ridge or the shoulder. We address both the modification to the near side
and to the away side in the same analysis. Theoretical investigations have
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also considered the structures separately. While their origins might in fact
be unrelated, they do both appear in the transition region from the low pT ,
hydrodynamical region to the high pT energy loss dominated region. Both
phenomena could be sensitive to the same properties of the produced matter,
or perhaps even be from related physical processes. Consequently, detailed
comparison between the near and away side modifications, particularly their
evolution with centrality is of prime interest. In this paper we present system-
atic data on the centrality and transverse momentum dependence of both the
ridge and the shoulder.

3.2 Definition of Correlation Function

Jets are important probes to understand the properties of the quark–gluon
plasma. But in central heavy ion collisions, thousands of particles are produced
in the final state, making jet finding an extremely difficult task. Instead,
two particle azimuthal correlations provide a simpler method to study the
properties of jet in the medium.

This correlation function method is a statistical method to study two parti-
cle correlations. When jets are produced in hard collisions, they will fragment
into high pT particles which are confined to a small range of azimuthal angle ∆φ
and pseudorapidity ∆η, where η = −ln(tan(θ/2)) and θ is the polar angle rel-
ative to the beam direction. The size of the jet cone, R =

√

∆φ2 +∆η2 ≈ 0.3.
So the idea of two particle correlations is to select a high pT particle, known as
the trigger particle, presumed to be a jet fragment, and correlate it with lower
pT particles (the partner or associated particle) in φ or η. Then the pair distri-
bution is plotted in the difference in azimuthal angle, ∆φ, and pseudorapidity,
∆η, of trigger and associated particles. When the difference of the azimuthal
angle between trigger and associated particles, ∆φ ≈ 0, both particles are
fragments of the same jet. If ∆φ ≈ π, the associated particle comes from the
opposing jet. By looking at these correlations, we can study the properties of
the near (∆φ ≈ 0) and away (∆φ ≈ π) side jets statistically.

A typical correlation function looks like Fig. 3.1. The two particle correla-
tion function has contributions from two sources: jet pairs and the underlying
event. In order to extract the jet signal, we need to determine the level and
also the shape of the underlying event background. After the shape and the
level are properly determined, we can subtract out the background and extract
the jet signal.

In this analysis, we measure the two particle ∆η–∆φ correlations. We
select a photon as the trigger particle and a charged hadron as the associated
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Figure 3.1: A typical correlation function. On the top are the jet pairs. On
the bottom are uncorrelated underlying backgrounds

particle, and measure the difference between the trigger and associated particle
azimuthal angles and pseudo–rapidities, η. The pT range of the photons in this
analysis is 2–3 GeV/c, which are primarily from the decay of π0 mesons. This
also avoid the low π0 signal to background ratio of low pT π0s due to huge
combinatorial background. Using photon as a trigger particle provides the
advantage of removing correlations coming from triggering baryons and anti–
baryons which have less associated meson yields than associated meson yields
in meson triggered collisions in central Au+Au collisions in this pT range [46].
Due to the geometry of the PHENIX central arms, the acceptance is non
uniform in both ∆φ and ∆η. We use the shape of the mixed event background
to correct the ∆φ and ∆η acceptance. The idea of event mixing is that by
forming pairs with trigger particles from one event and associated particles
from another event, the two particles will be totally uncorrelated. Hence,
the only effect which will change the shape of the mixed event distribution
is the acceptance of the detector. By measuring the mixed event background
properly, therefore we can correct for the acceptance in ∆η and ∆φ.

We define the 2D correlation function, C(∆η,∆φ), as:

C(∆η,∆φ) =
N same(∆η,∆φ)

∫

Nmixed(∆η,∆φ)d∆ηd∆φ

Nmixed(∆η,∆φ)
∫

N same(∆η,∆φ)d∆ηd∆φ
(3.1)
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where N same(∆η,∆φ) is for the measured correlated pairs, and Nmixed(∆η,∆φ)
is for the pairs from the mixed events.

The resulting C(∆η, ∆φ) is then both ∆η and ∆φ acceptance corrected.
A typical distribution is shown in Fig. 3.2(a).
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Figure 3.2: ∆η–∆φ correlation functions of trigger 2–3 GeV/c, partner 2–
3 GeV/c, in p+p, Au+Au at 60–90% and 0–20%. (a): Correlation function
before remove the combinatorial background; (b): conditional yield per trigger.

37



3.3 Data Selection

3.3.1 Data and Selection

In this analysis, we use the data taken during the 2004 and 2005 runs
(Run4 and Run5). After quality assurance checks, 8.8 x 108 events are used
in Au+Au, and 1.3 x 109 events are used in p+p.

All data has been calibrated. Events are removed if the vertex is more than
30 cm from the center, where the magnetic field is uniform within this region.

Single Particle Selection

We use the electro–magnetic calorimeter (EMCAL) to measure the pho-
tons. We remove the photon clusters that hit the hot towers and unresponsive
regions of the EMCAL. Each photon cluster also must pass shower shape cuts
to remove showers from charged particles. The position information from PC3
is used to ensure that there are no charged particles in the cluster. We also
require a time of flight cut to remove the neutral particles, such as neutrons
(TOF < 1.35 ns).

For charged particles, we require |zedDC | < 75 cm to remove drift chamber
edge effects. We also require a 2σ PC3 matching cut in both z and φ. We
group charged particles in 5 different pT bins, which are 1–1.5, 1.5–2, 1–2, 2–3,
3–5 GeV/c.

3.3.2 Analysis Scheme

In this analysis, we use the standard mixing scheme of PHENIX, which
is called “CabanaBoy”. In two particle correlation analysis, the signal, or
the foreground, is formed by pairing trigger and partner particles in the same
event. The mixed event background is formed by pairing trigger particles
from one event and partner particles from another event. Since the two events
are independent, this mixed event describes the uncorrelated event shape and
detector acceptance. In order to apply the same cuts to both foreground and
background, we apply the same pair cuts in mixed events. In CabanaBoy, we
group the events into 20 centrality bins (0–100%, 5% per bin), 12 z vertex bins
(−30 < z < 30 cm, 5 cm per bin). We do the mixing for events which have
similar centrality and z–vertex.

The centrality bins used in this analysis are 0–5%, 5–10%, 10–20%, 20–
40%, 40–60%, 60–90%. The most central bins are merged into 0–20% for
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more statistics. Trigger pT = 2–3 GeV/c, partner pT = 1–1.5, 1.5–2, 2–3, 3–5
GeV/c. The same pT bins also applied to p+p analysis.

3.4 Background Subtraction

In order to estimate the yield of the jet–induced pairs in the correlation
functions, we assume a two component model [21]. The two component model
assumes that the measured pairs are either from jet fragments or combinatorial
background from the underlying event.

For the underlying events, we must correct for the correlations created by
the collective flow described before. To do this, we assume the distributions of
both trigger and partner particle are proportional to 1+2 〈v2〉 cos 2(φ−ψRP ),
where ψRP is the angle of the reaction plane. The uncorrelated pairs in the
underlying events are then proportional to 1 + 2

〈

vA2 v
B
2

〉

cos(2∆φ), where A
and B correspond to trigger and associated particles, respectively. Based on
the results of PHOBOS [47] and PHENIX [48], the v2 of inclusive photons
and charged hadrons are treated as constant along the η direction, within the
PHENIX central arm η acceptance (|η| < 0.35).

In the two source model, the correlation function, CF(∆η, ∆φ) can be
rewritten as

CF (∆η,∆φ) = b0(1 + 2
〈

vA2 v
B
2

〉

cos(2∆φ)) + JF (∆η,∆φ) (3.2)

where JF(∆η,∆φ) is the correlation of the jet pairs, or the jet function.
The b0 determines the level of the underlying events.

The v2 of inclusive photons and charged hadrons used in this analysis are
measured by the standard reaction–plane method. Details will be presented
in the following sections.

In order to determine the contribution from the jet, J(∆η,∆φ), we need to
determine b0. We apply the “Zero Yield at Minimum” or ZYAM method [23],
which assumes that after subtraction the yield is zero at the minimum of the
jet function. This technique determines the maximum possible background
level. The point where the yield is zero is called the ZYAM point. Since v2
is constant along η within the PHENIX acceptance, then the combinatorial
background should also be flat within the PHENIX acceptance. Since the
single particle distribution in η, dN/dη, is uniform with the PHENIX η accep-
tance [49], we assume the ZYAM level, b0, is constant within the PHENIX
∆η acceptance. We project the correlation function, C(∆η,∆φ), on the ∆φ
direction to maximize the statistics, and then determine the ZYAM level. This
ZYAM level is applied to the whole ∆η range.
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The result of the subtracted correlation function is shown in Fig. 3.2(b).
The detail of the subtracted correlation function will be described in Chapter
4.

3.5 Measurement of v2

In this analysis, we measured v2 of inclusive photons and inclusive charged
hadrons, to ensure precise values in the centrality and pT bins for which we
construct correlation functions. The results are compared with other existing
PHENIX analysis.

We use the event plane method [50] to measure the azimuthal anisotropy.
The definition of v2 is Eq. 3.3

v2 = 〈cos(2φ− ψRP )〉 (3.3)

where ψRP is the direction of the reaction plane. Experimentally we can not
measure ψRP precisely. We define the event flow vector ~Qn = (Qx, Qy). Then
the event plane ψn for the n–th harmonic is defined as

Qx ≡ | ~Qn| cos(nψn) =
M
∑

i

wi cos(nφi), (3.4)

Qy ≡ | ~Qn| sin(nψn) =
M
∑

i

wi sin(nφi), (3.5)

ψn =
1

n
tan−1

(

Qy

Qx

)

, (3.6)

where M is the number of particles used to determine the event plane, φi is the
azimuthal angle of each particle, and wi is the weight to optimize the reaction
plane resolution. From Eq. 3.6, we can reconstruct the event plane ψ2 event by
event. This is known as the event plane for the second harmonic. The event
plane for higher harmonics will not necessarily be exactly the same.

After determining ψ2, v2 can be measured as

v2 =
vobs2

∆
=

〈cos(2(φ− ψ2))〉
〈cos(2(ψ2 − ψRP ))〉

(3.7)

where

∆ = 〈cos(2(ψ2 − ψRP ))〉 (3.8)

is the resolution of the reaction plane.
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3.5.1 Reaction plane resolution, ∆

Wemeasured the reaction plane resolution, ∆, using the beam–beam counter
(BBC). The systematic error is the difference in the resolution given by BBC
north and BBC south. The values of ∆ used in this analysis are listed in
Table 3.1.

Table 3.1: The reaction plane resolution, ∆, in various centrality
Centrality ∆ stat. err sys. err

0–5 0.2109 0.0005 0.0011
5–10 0.3094 0.0004 0.0038
10–20 0.3852 0.0002 0.0067
20–40 0.3867 0.0001 0.0067
40–60 0.2580 0.0002 0.0020
60–90 0.0909 0.0005 0.0015
0–10 0.2649 0.0003 0.0022
0–20 0.3310 0.0002 0.0042

3.5.2 v2 of Inclusive Photons

We measured the v2 of inclusive photons using the event plane method de-
scribed above. The measured results in this analysis are shown as red points
(CHC) and compared with with PHENIX preliminary Run4 result (shown as
blue points, AN518) [51] as shown in Fig 3.3(a), Fig 3.3(b) and Fig 3.3(c).
The v2 of inclusive photons used in this analysis are listed in Table 3.2. The
systematic error for the photon v2 is dominated by the reaction plane resolu-
tion.

Table 3.2: v2 of the inclusive photon in various centrality at pT = 2–3 GeV/c
Centrality v2 stat. err sys. err

0–5 0.0618 0.0015 0.0003
5–10 0.0950 0.0011 0.0012
10–20 0.1346 0.0007 0.0023
20–40 0.1780 0.0006 0.0031
40–60 0.1966 0.0014 0.0015
60–90 0.1825 0.0069 0.0030
0–10 0.0783 0.0008 0.0007
0–20 0.1038 0.0005 0.0013
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Figure 3.3: v2 of the inclusive photon at centrality 0–20%. Red points (CHC)
are measurement from this analysis; blue points (an518) are measurements
from PHENIX preliminary results [51]. (a): 0–20%; (b): 20–40%; (c): 40–
60%;
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3.5.3 v2 of inclusive charged hadron

We measured the v2 of the inclusive charged hadrons with the event plane
method described in Sec. 3.5.1. The particle selection cuts are consistent with
the cuts used in the correlation analysis. The measured values are compared
with PHENIX preliminary 2004 result [52]. Selected comparisons are shown
in Fig 3.4(a) to Fig 3.4(c). The v2 measurement in this analysis is in good
agreement with the PHENIX preliminary results. The v2 of inclusive charged
hadrons used in this analysis are listed in Table 3.3 to Table 3.7. The sys-
tematic error on this measurement is again dominated by the reaction plane
resolution.

Table 3.3: v2 of the inclusive charged hadron in various centrality at pT =
1.0–1.5 GeV/c

Centrality v2 stat. err sys. err
0–5 0.0419 0.0002 0.0019
5–10 0.0627 0.0002 0.0016
10–20 0.0915 0.0001 0.0034
20–40 0.1296 0.0001 0.0045
40–60 0.1558 0.0002 0.0029
60–90 0.1613 0.0014 0.0063
0–10 0.0520 0.0001 0.0010
0–20 0.0695 0.0001 0.0021

Table 3.4: v2 of the inclusive charged hadron in various centrality at pT =
1.5–2.0 GeV/c

Centrality v2 stat. err sys. err
0–5 0.0543 0.0004 0.0017
5–10 0.0821 0.0003 0.0021
10–20 0.1198 0.0002 0.0045
20–40 0.1666 0.0002 0.0059
40–60 0.1950 0.0004 0.0032
60–90 0.1982 0.0023 0.0108
0–10 0.0680 0.0002 0.0013
0–20 0.0912 0.0001 0.0028
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Figure 3.4: v2 of the inclusive charged hadron at centrality 0–20%. Red points
(CHC) are measured in this analysis; blue points (an473) are from PHENIX
preliminary results. [52]. (a): 0–20%; (b): 20–40%; (c): 40–60%;
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Table 3.5: v2 of the inclusive charged hadron in various centrality at pT =
1.0–2.0 GeV/c

Centrality v2 stat. err sys. err
0–05 0.0448 0.0002 0.0019
5–10 0.0672 0.0002 0.0017
10–20 0.0981 0.0001 0.0037
20–40 0.1382 0.0001 0.0048
40–60 0.1647 0.0002 0.0029
60–90 0.1694 0.0013 0.0072
0–10 0.0557 0.0001 0.0010
0–20 0.0745 0.0001 0.0022

Table 3.6: v2 of the inclusive charged hadron in various centrality at pT =
2.0–3.0 GeV/c

Centrality v2 stat. err sys. err
0–5 0.0654 0.0006 0.0014
5–10 0.0992 0.0004 0.0026
10–20 0.1424 0.0003 0.0053
20–40 0.1934 0.0002 0.0067
40–60 0.2177 0.0006 0.0036
60–90 0.2151 0.0035 0.0073
0–10 0.0823 0.0004 0.0017
0–20 0.1095 0.0002 0.0034

Table 3.7: v2 of the inclusive charged hadron in various centrality at pT =
3.0–5.0 GeV/c

Centrality v2 stat. err sys. err
0–5 0.0643 0.0017 0.0028
5–10 0.0989 0.0012 0.0025
10–20 0.1438 0.0008 0.0060
20–40 0.1907 0.0007 0.0070
40–60 0.2078 0.0016 0.0041
60–90 0.2052 0.0085 0.0123
0–10 0.0817 0.0010 0.0013
0–20 0.1104 0.0006 0.0035
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3.6 Photon Distribution

Inclusive photons with 2 < pT < 3 GeV/c are dominated by decay photons
from π0s. It is important to know the pT distribution of the parent π0s.

The method used here is similar to the “shark fin” method used in direct γ–
h analyses in PHENIX [53]. The idea is to calculate the probability of a π0 with
the momentum at pπ

0

T has a decay photon which has transverse momentum
pγT . We use an analytic approach to directly calculate the probability of a π0

with transverse momentum pπ
0

T , decaying to a photon with pγT between 2 and
3 GeV/c.

The probability of a photon parent with pπ
0

T , Prob(pπ
0

T ) is

Prob(pπ
0

T ) = 0, if pπ
0

T < pγT |low

= 2
pπ

0

T − pγT
pπ

0

T

, if pγT |low < pπ
0

T < pγT |high

= 2
pπ

0

T − pγT |high
pπ

0

T

, if pγT |high < pπ
0

T

(3.9)

Here the pγT is between 2–3 GeV/c. The resulting decay probability distri-
bution is shown in Fig 3.5. As an example, for a 3 GeV π0, the probability to
have a 2–3 GeV/c decay photon is about 0.66.

This probability distribution is weighted by the π0 spectra from p+p [54],
and Au+Au in various centralities [20]. The π0 spectra in [20] are measured
mainly in 10% centrality bins, and properly combined to be consistent with the
centrality bins used in this analysis. We only consider π0 pT below 10 GeV/c,
since the yields for high pT π0 are several orders of magnitude smaller and
have essentially no contributions in the yields of the decay photons. When pT
of π0 is below 2 GeV/c, the π0 has no contribution to decay photons between
2–3 GeV/c.

We use the π0 spectrum of Au+Au at 0–20%, Fig 3.6, as an example.
Fig 3.6 has two spectra. The black spectrum is the measured π0 spectrum in
Au+Au [20]. The red points show the measured spectrum weighted by the
probability in Fig 3.5. It is clear that in the weighted spectra (red), 2–3 GeV/c
π0s are still the dominant source of photons at 2–3 GeV/c.

From these weighted spectra , we can measure the average pT of the parent
π0s, which is tabulated in Table 3.8. For comparison, we also list the mean pT
of π0s at pT 2–3 GeV/c. The overall trend is that the mean pT of the parent
π0s is higher than the mean pT from the unweighted π0 spectra.
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Table 3.8: The average pT of π0 which decays to a 2–3 GeV/c photon
Centrality mean parent π0 pT [GeV/c] mean π0 pT at 2–3 GeV/c

0-5 2.60729 2.34511
5-10 2.62896 2.35626
10-20 2.64737 2.35876
20-40 2.66607 2.36175
40-60 2.69527 2.36674
60-90 2.71375 2.3706
0-10 2.61747 2.35025
0-20 2.63031 2.35382
p+p 2.71317 2.36951

 [GeV/c]
0π

T
p

0 2 4 6 8 10 12 14 16 18 20

)
 =

 2
-3

Tp|γ
 ->

 
Tp|0 π

pr
ob

(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.5: Probability distribution of π0 generating a 2–3 GeV/c decay pho-
ton.
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3.7 Normalization

For standard two particle azimuthal ∆φ correlations, the conditional yield
is an important quantity which measures the number of associated particles
when there exists a trigger particle. This conditional yield is also called the
“per trigger yield”. Eq. (3.10) is used to calculate this per trigger yield:

1

NA

dNAB(∆φ)

d(∆φ)
=

1

ǫB

NAB
Real

NA
Real

1
∫

d(∆φ)
J(∆φ) (3.10)

In Eq. (3.10), ǫB is the single particle efficiency of the associated parti-
cles. NAB

Real (and N
A
Real) is the true number of pairs (triggers) measured in the

analysis.
For ∆φ correlations, the integral

∫

d(∆φ) is π (2π) if the ∆φ is from 0 to
π (2π). This is because ∆φ is a cyclic function.

To get the per trigger yield of in ∆η–∆φ correlation functions, we extend
Eq. (3.10):

1

NA

d2NAB(∆η,∆φ)

d(∆η)d(∆φ)
=

1

ǫB

NAB
Real

NA
Real

1
∫

d(∆η)
∫

d(∆φ)
J(∆η,∆φ) (3.11)
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In this analysis, ∆φ is from −π/2 to 3π/2, so
∫

∆φ is 2π, which is the
same as the one–dimensional case.

In the ∆η direction, both the trigger and the partner distributions are
flat within the PHENIX η acceptance (|η| < 0.35). If we convolve two flat
distribution between |η| < 0.35, we can find a simple triangular shape for the
∆η acceptance, acc(∆η) = (0.7−|∆η|)/0.7 [55]. This means we only have 50%
pair efficiency in the ∆η direction. In Eq. (3.11),

∫

d(∆η) should be written

as
∫ 0.7

−0.7
acc(∆η)d(∆η) = 0.7.

Similarly, if both trigger and partner distributions are flat in φ from 0 to
2π, we can show that acc(∆φ) = 1.

The equation to calculate the per trigger yield in 2D ∆η ∆φ correlation,
or Eq. (3.11), should be re–written in the form of

1

NA

d2NAB(∆η,∆φ)

d(∆η)d(∆φ)
=

1

ǫB

NAB

NA

1
∫

acc(∆η)d(∆η)
∫

acc(∆φ)d(∆φ)
J(∆η,∆φ)

(3.12)

where
∫ 0.7

−0.7
acc(∆η)d(∆η) = 0.7 and

∫ 3π/2

−π/2
acc(∆φ)d(∆φ) = 2π.

3.8 Efficiency Correction

In order to obtain the per trigger yield of the correlation function, we
need to know the efficiency of detecting the associated charged hadrons, ǫB,
in Eq. 3.11. We determine this efficiency by comparing the measured charged
particle spectra in this analysis with the published spectra [56], which has been
corrected for the detector acceptance and all the efficiencies.

In [56], PHENIX published the spectra for inclusive charged hadrons,
(h++h−)

2
, in units of 1

2πpTNevt

dN2

dpT dη
. In order to get the corrected number of par-

ticles inside the PHENIX central arm η acceptance, we convert the spectrum
to the number of particles expected in a certain pT bin in this measurement.
To do this, we multiply 2π, pT and dpT for each pT bin in the spectrum. We
then apply dη =0.7, a factor of 2 for h+ and h−, and the number of events,
Nevt, in our measurement.

Using the number of particles expected from the published spectra, Npublish,
and number of particles we measured, Nmeasured, we can calculate the associ-
ated particle efficiency, ǫ, for this measurement, defined as

ǫ =
Nmeasured

Npublish
(3.13)
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For p+p, the inclusive charged hadron spectra is taken from PHENIX pa-
per [57]. By comparing the measured spectra with the published ones in [57],
we can determine the efficiency in p+p. The spectrum in [57] is absolutely
normalized; we use Eq.( 3.14) to convert the cross section to number of parti-
cles:

E
d3σunbiasedx

d3p
= σunbiasedx

1

2π

1

pT

1

NTotalUnbiased
X

d2NUnbiased
X

dpTdy
(3.14)

σunbiasedx = 42.5 mb is the total p+p inelastic cross section at
√
s = 200 GeV.

There is also a BBC trigger bias effect, which is Nunbiased
x = CBBC

p+p N
totalbiased
x .

The value of 1/CBBC
p+p =0.75. With all the parameters, we can calculate

N totalbiased
x . From Eq.( 3.14), we transform the cross section of inclusive charged

particles to an invariant yield.
The efficiency in our measurement in Au+Au and p+p is shown in Ta-

ble 3.9.

Table 3.9: Efficiency of AuAu and pp in various pT and centrality bins.
centrality partner pT [GeV/c]

1.0 – 1.5 1.5 – 2.0 1.0 – 2.0 2.0 – 3.0 3.0 – 5.0
0–5 0.1954 0.2011 0.1966 0.2143 0.2522
5–10 0.2033 0.2097 0.2048 0.2236 0.2535
10–20 0.2158 0.2241 0.2177 0.2371 0.2618
20–40 0.2297 0.2399 0.2320 0.2531 0.2758
40–60 0.2469 0.2608 0.2499 0.2745 0.2971
60–90 0.2589 0.2773 0.2627 0.2986 0.3187
0–10 0.1986 0.2047 0.2000 0.2180 0.2520
0–20 0.2057 0.2129 0.2073 0.2258 0.2563
p+p 0.2061 0.2172 0.2082 0.2299 0.2610

3.9 Multiplicity Cross Check

To make sure that we applied the correct factor when calculating the per
trigger yield, we perform a multiplicity crosscheck. The idea is that the total
multiplicity obtained from ∆η–∆φ correlation should be the same as from ∆φ
correlations times the ∆η bin width. Since we applied the same method in all
centrality and pT bins, we only select one particular example here.

We use trigger pT = 2–3 GeV/c, partner pT = 1–2 GeV/c, centrality 0–20%
as an example. When we integrate the ∆η–∆φ correlation function, Fig 3.7,
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Figure 3.7: ∆η–∆φ jet function of 2–3x1–2 GeV/c, centrality 0–20%, with v2
modulated underlying event background subtracted.

times the bin width in ∆φ and ∆η, the total multiplicity is 0.660 pairs per
trigger. Integrating the correlation function along ∆φ for the 0.0 < |∆η| < 0.7,
Fig 3.8, yield the total multiplicity of 0.471 * 1.4 = 0.660, showing that the
two results are consistent.

We also check in finer ∆η bins. Integrating 4 ∆η bins separately and
summing 0.0 < |∆η| < 0.1, 0.1 < |∆η| < 0.3, 0.3 < |∆η| < 0.5, and 0.5 <
|∆η| < 0.7, (Fig 3.9, Fig 3.10, Fig 3.11 and Fig 3.12), then the total multiplicity
of 0.495 ∗ 0.2+0.481 ∗ 0.4+0.494 ∗ 0.4+0.427 ∗ 0.4 = 0.660. This verifies that
the result is consistent between 1D ∆φ and 2D ∆η–∆φ correlation functions.

3.10 Systematic Error

In this analysis, systematic errors arise from four different sources: v2,
ZYAM, hadron efficiency, and hadron contamination of the photon trigger.

The shape of the underlying event background is b0(1 + 2c2 cos(2∆φ)),
where b0 is the level of the background, and c2 is the modulation defined as
c2 = vtrig2 × vpart2 . The v2 systematic error of the subtracted jet function is by
fixing background level, b0 and varying the v2 by the 1σ systematic error.

The ZYAM error is the uncertainty of the ZYAM level, or b0. To estimate
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Figure 3.8: ∆φ correlation function of 2–3x1–2 GeV/c, centrality 0–20%, 0.0 <
|∆η| < 0.7
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Figure 3.9: ∆φ correlation function of 2–3x1–2 GeV/c, centrality 0–20%, 0.0 <
|∆η| < 0.1
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Figure 3.10: ∆φ correlation function of 2–3x1–2 GeV/c, centrality 0–20%,
0.1 < |∆η| < 0.3
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Figure 3.11: ∆φ correlation function of 2–3x1–2 GeV/c, centrality 0–20%,
0.3 < |∆η| < 0.5
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Figure 3.12: ∆φ correlation function of 2–3x1–2 GeV/c, centrality 0–20%,
0.5 < |∆η| < 0.7

this value, use a Monte Carlo simulation by varying the data points of the
correlation function by their statistical errors. The ZYAM error is determined
by the the variation of the ZYAM level.

The systematic error due to the hadron efficiency comes from comparing
the measured inclusive hadron spectra with the published spectra. This value
is between 7.1% – 9.4%, depending on centrality and partner pT .

In order to estimate the hadron contamination of the trigger, we removed
the PC3 veto cut. in Fig. 3.13, we compare the correlation function with and
without veto cut. by comparing the per trigger yield after removing the PC3
veto cut, we can estimate the effect of the hadron contamination in the trigger
photons. The level of the contamination is about 5%

All four different systematic are summed in quadrature.
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Figure 3.13: Left: correlation function with (black) and without pc3 veto cut
(red). Right: the ratio of the correlation function of (without veto)/(veto).
trigger pT =2–3 GeV/c, partner pT =1–2 GeV/c, and centrality = 0–90.
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Chapter 4

Decomposing the Correlation Functions

4.1 Introduction

In this chapter, we assume the collective flow induced modulation of the
underlying background is described by v2 (cos 2∆φ). Effects of higher har-
monics will be discussed in Chapter 5 and 6. After subtracting the underlying
events, we study the ∆η–∆φ correlation functions in detail. We decompose
the jet functions by fitting the different components to extract the yield of
the pp–like away side jet and the shoulder, which corresponds to the possible
medium modification. The shoulder is also compared with the ridge in the
nearside.

4.2 ∆η–∆φ Correlation Functions

∆η–∆φ correlations are measured for various centralities in Au+Au colli-
sions and in p+p. By applying the normalization and the efficiency correction
discussed in Chapter 3, and the ZYAM method, we obtain the ∆η–∆φ condi-
tional yields of the associated particles per photon trigger.

In left hand side of Fig. 4.1 and Fig. 4.2, we present correlation functions
from p+p, peripheral and central Au+Au collision before removing the com-
binatorial background. Before subtracting the underlying event background,
the p+p correlation function has a clear peak on the nearside (∆φ ≈ 0 and
∆η ≈ 0). There is an awayside peak at ∆φ ≈ π which extends along ∆η. This
extension along ∆η is due to kT smearing. The correlation function in the
60–90% centrality range looks like that in p+p. In central Au+Au collisions,
an enhancement is seen along the ∆η direction on the near side (∆φ ≈ 0),
this is the ridge which is significantly different from peripheral Au+Au or p+p
cases. .
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The right hand side of Fig. 4.1 and Fig. 4.2 show the correlation functions
after subtraction of the flow modulated background. Both p+p and peripheral
Au+Au collisions (60–90%) show similar dijet structure. In 0–20%, the near-
side enhancement along ∆η in nearside is significant. This ridge was reported
by STAR [25] and PHOBOS [37] previously. On the awayside, where ∆φ ≈ π,
p+p peaks at ∆φ = π, but central Au+Au shows a local minimum. The peaks
shift to ∆φ ≈ π ± 1 and extend along ∆η. This double peak structure, the
shoulder, is consistent with previous PHENIX results [21, 22, 23].
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Figure 4.1: ∆η–∆φ correlation functions of trigger 2–3 GeV/c, partner 1–2
GeV/c, in p+p, Au+Au at 60–90% and 0–20%. (a): Correlation function
before removing combinatorial background; (b): conditional yield per trigger.
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Figure 4.2: ∆η–∆φ correlation functions of trigger 2–3 GeV/c, partner 2–
3 GeV/c, in p+p, Au+Au at 60–90% and 0–20%. (a): Correlation function
before remove the combinatorial background; (b): conditional yield per trigger.
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4.2.1 ∆φ Correlation Functions in Different ∆η Region

In order to trace the modification from p+p to Au+Au collisions, we slice
the ∆φ correlation in 4 ∆η ranges: |∆η| = 0–0.1, 0.1–0.3, 0.3–0.5 and 0.5–0.7.
In peripheral Au+Au collisions (60–90%), shown in Fig.4.3, the ∆φ shape
is consistent with p+p collisions for all 4 ∆η regions. The near side yield
decreases as the ∆η slice moves from ∆η = 0 to larger ∆η, which is consistent
with the fact that the nearside jet has a Gaussian shape in the ∆η direction
and peaks at ∆η = 0. In contrast, the away side peak remains roughly the
same in all ∆η regions.

However, in central Au+Au collisions at large ∆η on the near side, we
see a clear difference from p+p, as shown in Fig.4.4. In the rapidity range
0.5 < |∆η| < 0.7, substantial yield is seen in Au+Au, while in p+p there is
very little yield on the near side. At smaller ∆η in Au+Au collisions there
is also some enhancement compared to the jet peak in p+p. In all measured
∆η regions on the away side, the double peak structure away from ∆φ ≈ π is
clearly seen in central Au+Au, in contrast to the single peak in p+p collisions.
This is consistent with previous observations [21].
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Figure 4.3: Peripheral Au+Au (60–90%) and p+p conditional per trigger yield
in different ∆η regions for trigger pT = 2.0 – 3.0 GeV/c and partner pT = 1.0
– 2.0 GeV/c. Au+Au (p+p) data are shown by solid circles (squares).
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Figure 4.4: The same as Fig. 4.3, but for central Au+Au collisions (0–20%).

4.3 Near Side Projection along ∆η Direction

To focus on the modification of the near side yield along ∆η in Au+Au, the
two–particle ∆η–∆φ correlation function is integrated in |∆φ| < 7π/18 and is
projected in the ∆η direction, shown in Fig. 4.5(a). We choose |∆φ| < 7π/18
because in p+p, this is the size of the near side jet. In central Au+Au collisions
the near side is wider along ∆η and is enhanced compared to p+p. Moving
from central to peripheral Au+Au collisions, the near side enhancement along
∆η decreases, and the peak becomes more consistent with the jet–like shape
in p+p. This indicates that the yield of the ridge strongly correlates with the
size of the medium.

To investigate the partner pT dependence, we present the ∆η projections
for four partner pT ranges in the most central Au+Au (0–20%) collisions in
Fig. 4.5(b). The effect of the ridge is the strongest in central collisions com-
pared to p+p At partner pT below 3 GeV/c, the enhancement is significant
in Au+Au, and the peak is wider than in p+p. At larger partner pT = 3–5
GeV/c, there is no obvious enhancement in Au+Au and the Au+Au shape
is consistent with p+p. Therefore near side enhancement along ∆η decreases
significantly for high partner pT . The ridge is most significant at partner pT
below 3 GeV/c.
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Figure 4.5: Near side ∆η correlations of Au+Au (circles) and p+p (squares).
(a): various centralities for trigger pT = 2.0 – 3.0 GeV/c, partner pT = 1.0 –
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4.4 Extracting the Near Side Yield

In Fig. 4.6, the near side per trigger yield is plotted as a function Npart,
which is the number of nucleons participating the collisions, for different part-
ner pT . Since we are using the ZYAM method to determine the background
level, it is natural to use ZYAM point to separate the near and away side. In
this analysis, we adapt the idea of the ZYAM point, but more closely follow
previous PHENIX analysis [23]. We define the near side within a fixed ∆φ
region as |∆φ| < 7π/18. The selection of this ∆φ range is due to the bin
width in the correlation function histogram. However, it is consistent with
the previous result using the ZYAM point to separate the near and away side.
The systematic error of the nearside yield is coming from the determination
of the ZYAM level and from the v2 modulations.

Different symbols correspond to sequential slices in |∆η|. The p+p near
side yields are plotted as the left most symbols and serve as a baseline mea-
surement. In p+p collisions, the yield decreases gradually for ranges from |∆η|
= 0–0.1 to 0.5–0.7. This is consistent with a typical jet structure, which peaks
at ∆η ≈ 0 and decreases at larger ∆η. In the range of 0.5 < |∆η| < 0.7 the
yield in p+p is very small.

For partner pT below 3 GeV/c, the conditional yield monotonically in-
creases with Npart up to Npart ≈ 240 in all ∆η regions. For Au+Au collisions
the largest enhancement relative to p+p collisions is seen in the 0.5 < |∆η| <
0.7 region where the p+p yield (from jets) is small. This enhancement is clear
evidence of the ridge. At Npart larger than 240, the yield at 0.5 < |∆η| < 0.7
levels off. For partner pT above 3 GeV/c the yield does not change with Npart

within the errors.

4.5 Ridge Extraction

4.5.1 Definition of Ridge in PHENIX

From Fig. 4.5(a) and Fig. 4.5(b), we know that the near side correlation
consists of a jet–like correlation which peaks at ∆φ = 0, and a ridge like
correlation which is flat in ∆η. The ridge is flat along the ∆η direction to
4 units of pseudorapidity [37]. In two particle correlation analysis, the width
of the near side jet when fitting with a Gaussian function is about 0.3 in ∆φ
direction. Assume the jet shape is symmetric in ∆η and ∆φ direction, then
the width in ∆η is about 0.3. However, since the PHENIX ∆η acceptance is
limited (|∆η| ∼ 0.7, which contains more than 95% of the near side jet) there
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is always a non–negligible jet contamination. The level of jet contamination to
any ridge characterization of the enhancement can be estimated from the non–
zero yield in p+p at the same ∆η region, which is quite small in the outermost
0.5 < |∆η| < 0.7 bin. Thus in what follows, we define our ridge yield as the
excess of the near side yield in Au+Au compared to p+p for 0.5 < |∆η| < 0.7:

Yridge = Y near
AuAu|0.5<|∆η|<0.7 − Y near

pp |0.5<|∆η|<0.7 (4.1)

The potential effect of an interplay between near side jet modification and
ridge yield is investigated, and an extra systematic uncertainty from this source
is assigned to Yridge. To do this, different possible scenarios for the near side are
assumed, including (i) jet broadening, (ii) jet suppression, and (iii) dilution–
meaning a lowering of the per–trigger yield by the presence of the ridge or
other non–jet trigger particles.

Here we discuss these three possible scenarios separately. The first is when
the near side jet interacts with the medium, the number of associated particles
in the jet–like correlation in Au+Au is the same as in p+p, but with a wider
Gaussian width in ∆η; we call this situation as “jet broadening”. The second
case assumes that the jet medium interaction does not change the shape of
the jet, but the yield is modified. This is the case of near side jet suppression.
We can simply write this as:

YAuAu = xYpp + Yridge (4.2)

where YAuAu is the total near side yield in Au+Au, Ypp is the jet like yield in
p+p and Yridge is the ridge yield. The factor x is the suppression in Au+Au,
which is a function of centrality. In p+p collisions, Eq. 4.2 automatically
leads to x =1 and Yridge = 0. The third case is near side jet dilution. In
this analysis, the pT of our trigger particle is between 2–3 GeV/c, where the
medium response dominates, so some of our trigger particles may not come
from jets, but instead arise the ridge. If the trigger particle is from the jet, then
associated particles will come from both jet and ridge. If the trigger particle
is from the ridge, then the associated particle will come from ridge only. We
define this situation as jet dilution, which indicates the trigger from the jet
is ’diluted’ by triggers from the ridge. Since we report per trigger yields, we
assume that x triggers are from jets, which carry x times (Ypp+ Yridge). There
will be (1-x) triggers from the ridge, with associate particles (1-x) times Yridge.
So the over all effect is

YAuAu = x× (Ypp + Yridge) + (1− x)× Yridge

= xYpp + Yridge (4.3)
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By comparing Eq. 4.2 and Eq. 4.3, we see that the jet dilution effect is
equivalent to jet suppression. We will treat the two situations as one scenario.
We fit the jet function to evaluate the yield of the ridge. The ∆η correlation
functions are fitted by Eq. 4.4:

YAuAu(∆η) =
Yjet√
2πσjet

exp(−(∆η)2

2σ2
jet

) + Yridge (4.4)

There are three parameters in Eq. 4.4: the yield of jet like correlation, Yjet,
the jet width in the ∆η direction, σjet, and the yield of ridge, Yridge. The first
step is to fit the p+p correlation with Eq. 4.4 by fixing Yridge = 0, as there is no
ridge in p+p collisions at RHIC. Then we can extract the yield and Gaussian
width in ∆η of p+p collisions.

In order to consider the scenarios of jet broadening and jet suppression,
we use Eq. 4.4 to fit the ∆η correlation, but must fix different parameters
according to different assumptions. In the jet broadening case, we fixed the
jet yield to be equal to the yield in p+p, or Yjet = Ypp, and leave the jet width
and ridge yield as free parameters. In the jet suppression case, we fix the jet
∆η width to p+p (i.e. σjet = σpp), and let the jet yield and ridge yield as free
parameters.

∆η correlation functions in various associated particle pT and centrality
bins such as Fig. 4.5(a) and Fig. 4.5(b) are fitted using Eq. 4.4. When testing
the jet broadening scenario, where we fix the jet yield to p+p, the near side
jet width increases with Npart as shown in Fig. 4.7. On the other hand, if
we fit with the jet suppression scenario, where we fix the jet width to p+p,
the near side jet yield in Au+Au decreases when increasing Npart, as shown in
Fig. 4.8. The χ2 of two different assumptions are tabulated in Table 4.1. From
Table 4.1, the assumption of jet broadening generally gives smaller χ2 value.
But both assumptions give reasonable χ2 values. So it is hard to say which
assumption is better than the other. More important, either method gives a
substantial ridge yield in central collisions, providing supporting evidence that
the ridge has been observed in PHENIX.

In addition to the two extreme cases mentioned above, we also estimate
the ridge yield through another method. We assume that the YAu+Au,near =
Yp+p,near + Yridge, or Yridge = YAu+Au,near - Yp+p,near, which assumes that near
side Au+Au is simply a p+p like jet yield plus a ridge yield which is flat ∆η.
The ridge yield is simply the excess in Au+Au compare to p+p in different
∆η region.

This systematic uncertainty coming from this physical assumptions de-
scribes previously is included in Fig. 4.9 and other figures as the thin solid
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Figure 4.7: Jet broadening case, where the jet yield in the nearside is fixed
and fit the jet width of the near side. Near side jet widths are plotted as a
function of Npart and partner pT

Table 4.1: χ2 table for different fitting method (Degrees of freedom = 5)
assoc. pT Centrality jet broadening jet suppression
1.0–1.5 Cent–00–20 15.94 17.26
1.0–1.5 Cent–20–40 1.75 2.40
1.0–1.5 Cent–40–60 2.67 2.67
1.0–1.5 Cent–60–90 3.98 3.73
1.5–2.0 Cent–00–20 3.83 5.99
1.5–2.0 Cent–20–40 3.14 4.91
1.5–2.0 Cent–40–60 1.50 1.70
1.5–2.0 Cent–60–90 7.57 7.40
2.0–3.0 Cent–00–20 4.05 5.05
2.0–3.0 Cent–20–40 6.55 5.39
2.0–3.0 Cent–40–60 3.14 4.53
2.0–3.0 Cent–60–90 10.22 10.17
3.0–5.0 Cent–00–20 4.40 4.78
3.0–5.0 Cent–20–40 2.12 1.57
3.0–5.0 Cent–40–60 10.77 9.48
3.0–5.0 Cent–60–90 4.33 4.39

66



partN
0 100 200 300 400

A
B

N

0

0.02

0.04

0.06

0.08
2-3x1-1.5 GeV/c
2-3x1.5-2 GeV/c
2-3x2-3 GeV/c
2-3x3-5 GeV/c

Figure 4.8: Near side jet suppression case. The jet width in near side is
unmodified and fit the nearside jet yield Near side jet yields, NAB are plotted
as a function of Npart and partner pT

brown lines which bracket the Yridge (0.5 < |∆η| < 0.7) data points.
The ridge yield defined by Eq. 4.1 can also be applied to the entire ∆η

range, 0.0 < |∆η| < 0.7. While the 0.5 < |∆η| < 0.7 p+p jet like contribution
is relatively small, the ∆η region 0.0 < |∆η| < 0.7 contains approximately
the full near side jet. The ridge yield per unit ∆η extracted in the ∆η regions
(|∆η| = 0.5–0.7 and 0–0.7) are compared in Fig. 4.9. The ridge yield extracted
from the two different ∆η regions are consistent with each other, indicating
that the ridge yield is relatively flat in ∆η around ∆η = 0.

4.5.2 Results

The final results of the ridge yield as a function of Npart in different partner
pT bins are shown in Fig. 4.9. At partner pT below 3 GeV/c, the ridge yield
is consistent with 0 at Npart ≈ 14. The ridge yield increases with Npart up to
Npart ≈ 250. When Npart > 250, the ridge yield is constant, or even decreasing
with increasing with Npart for the most central collisions. Similar trends in
Npart have been observed previously by PHENIX [21]. At partner pT > 3
GeV/c, the ridge yield is consistent with zero.
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Figure 4.9: Ridge yields extracted by Yridge = YAu+Au,near - Yp+p,near for trigger
pT = 2.0 – 3.0 GeV/c and various partner pT in two different ∆η region (0 <
|∆η| < 0.7 and 0.5 < |∆η| < 0.7. The brown lines apply to 0.5 < |∆η| < 0.7
and is the systematic error due to physics assumptions regarding ridge/jet
modification interplay described in the text .
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4.6 Extracting the Away Side Yields

4.6.1 Decomposing Different Components

We fit the jet functions to extract the contribution of different components
of the away side correlation. This allows separating the two components, which
we refer to as the head of the jet at ∆φ = π and shoulder at ∆φ ≈ 2 rad.

Eq. 4.5 is used to fit the full ∆φ jet correlation function:

J(∆φ) =
Yn√
2πσn

exp(−(∆φ)2

2σ2
n

)

+
Ys√
2πσs

exp(−(∆φ − π −D)2

2σ2
s

)

+
Ys√
2πσs

exp(−(∆φ − π +D)2

2σ2
s

)

+
Yh√
2πσh

exp(−(∆φ − π)2

2σ2
h

) (4.5)

Eq. 4.5 has four terms. The first term describes the near side jet. The
second and third term describe the shoulder, which has been considered a
possible medium response due to the jet. These two terms peak at ∆φ = π±D.
The last term is motivated by [24, 58], where the away side jet reappears at
large pT at ∆φ = π. We assume there is a remnant of a p+p like away side
jet, which is called the “head”.

In Eq. 4.5, we assume each component has a Gaussian shape. Yn, Ys, and
Yh (σn, σs, and σh) are the yield (width of the Gaussian) of the near side,
shoulder and head respectively. D is the position of the shoulder to describe
the displacement of the peak.

In order to reduce the number of fit parameters, we checked whether the
width of the head could be fixed. We use Eq. 4.5 to fit the jet function in
Au+Au to extract the width of the head component, σhead. The result is
shown in Fig. 4.10. We see the extracted width in Au+Au is consistent with
p+p. Consequently, we fix the width of the head component to the width of
the away side jet in the corresponding pT bin in p+p collisions. The p+p away
side width is tabulated in Table 4.2.

After fixing the width of the head component, we also tried to fix the
position of the shoulder, parametrized by D in Eq. 4.5. After fixing the head
width, we fit the correlation function to obtain the D in Eq. 4.5. In Fig. 4.11,
D is plotted as a function of Npart at trigger pT = 2–3 GeV/c, partner pT
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Figure 4.10: The width of the head component (punch through jet), σhead, by
fitting jet function with Eq. 4.5. trigger pT = 2.0 – 3.0 GeV/c, partner pT =
1.0 – 2.0 GeV/c.

= 1–2 GeV/c. The D does not vary significantly with Npart. Similar results
are also found in other pT bins. Based upon this study, we fix the position
of the shoulder, D, to that obtained in the 0–20 % centrality bin, where the
modification is most statistically significant. The values of D used in this
analysis is tabulated in Table 4.3

Now we can fix the head width and the position of the shoulder, we are
able to decompose the away side associated particle yields. ∆φ = 7π/18 is
used as the separation point between the near and the away side. In the away
side decomposition, fit only in between 7π/18 < ∆φ < (2 − 7/18)π. The jet
function of different centrality and ∆η bins is fitted by Eq. 4.5 without the
term describing the near side:
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Figure 4.11: The position of the shoulder, D, from fitting with Eq. 4.5. Trigger
pT = 2.0–3.0 GeV/c, partner pT = 1.0–2.0 GeV/c

J(∆φ) =
Ys√
2πσs

exp(−(∆φ − π −D)2

2σ2
s

)

+
Ys√
2πσs

exp(−(∆φ− π +D)2

2σ2
s

)

+
Yh√
2πσh

exp(−(∆φ− π)2

2σ2
h

) (4.6)

Eq. 4.6 is used to fit both Au+Au and p+p jet functions. When used to
fit p+p, Ys is fixed to 0 because this structure is not observed in p+p. As
previously described, the width of the head region is fixed to the away side
width in p+p, and the position of the shoulder is fixed by D in Table 4.2 and
Table 4.3. Finally, there are only 3 free parameters in the fitting function: the
yield of the head region, the yield of the shoulder region, and the width of the
shoulder. We do not set any limit on these parameters.

A typical fit is shown in Fig 4.12. The left hand side of the plot shows a fit
to the full ∆φ range (−π/2 to 3π/2) with Eq. 4.5, while the right hand side
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Table 4.2: The p+p away side width in different partner pT bins. Trigger pT
= 2–3 GeV/c

partner pT [GeV/c] width [rad]
1.0–1.5 0.702 ± 0.025
1.5–2.0 0.622 ± 0.031
1.0–2.0 0.679 ± 0.019
2.0–3.0 0.581 ± 0.031
3.0–5.0 0.532 ± 0.028

Table 4.3: The shoulder displacement, D(pT ), in different partner pT bins at
centrality 0–20. Trigger pT = 2–3 GeV/c

partner pT [GeV/c] D [rad]
1.0–1.5 1.125 ± 0.030
1.5–2.0 1.030 ± 0.068
1.0–2.0 1.104 ± 0.027
2.0–3.0 1.166 ± 0.047
3.0–5.0 1.274 ± 0.132

shows a fit to the away side only, from 7π/18 to 29π/18, with Eq. 4.6. The
magenta curve is the complete fit function, the red curve is the head, the blue
is the shoulder, and the green is the near side. On left hand side, p1 is the
near side yield, p2 is the near side width, p3 is the yield of one shoulder, p5
is the width of shoulder, and p6 is the yield of head. For right hand side, p3
is the yield of one shoulder, p5 is the width of shoulder, and p6 is the yield
of the head, which has the same definition as left hand side. After fitting,
we obtain the yield of head, shoulder and total away side yield by integrating
the fitting function. The statistical error for these yield is obtained from the
error matrix. The systematic error of the away side yield is coming from the
determination of the ZYAM level and from the v2 modulations.

4.6.2 Results

In Fig. 4.13 the two components of the away side yield along with the total
yield are plotted versus Npart. As a crosscheck, the away side yield was also
measured via direct integration over |∆φ| > 7π/18. The result is consistent
with the away side yield determined from the fits. The centralities used in the
fitting analysis are 0–20%, 20–40% and 40–60%.

In Fig. 4.13, when the partner pT is below 3 GeV/c, the total away side
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Figure 4.12: Fitting of the per trigger yield in the away side. Trigger pT =
2.0–3.0 GeV/c, partner pT = 1.0–2.0 GeV/c, centrality 0–20%

yield increases with Npart. This happens to be the pT region where the shoulder
is significant. There is also an obviously different trend in shoulder and head
region versus Npart.

The decreasing trend of the head with increasing Npart, discussed above, is
generally interpreted as the away side jet becoming more and more quenched
inside the formed matter as the size of the medium increases [23, 58, 59, 60].
Similarly, the appearance of the shoulder has also been commonly attributed
to this process, as the jet is quenched, particles appear at larger angle with
respect to the jet axis to form the shoulder

For associated particles with pT > 3 GeV/c, the total away side yield in
Au+Au collisions is smaller than in p+p. This unambiguous suppression of
the total away side yield in heavy ion collision is due to the the overwhelming
domination of the jet–like ”head” correlation with increasing pT , and thus is
another confirmation of the jet quenching effect.

4.7 Punch Through IAA

IAAis defined as the ratio of the yield between Au+Au and p+p jet yields [23].
The key drawback of IAA is that it does not account for the crosstalk between
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the head and shoulder properly. To quantify the suppression of the punch
through jet, we introduce a new parameter, the “punch through IAA”. The
idea of the punch through IAA is to quantify the suppression of the punch
through jet, or head, in the medium. It is defined as

IAA,punch = Y head
AuAu/Y

away−side
pp (4.7)

Fig. 4.14 shows the punch throgh IAA as a function of Npart for different
partner pT bins. Punch through IAA decreases from mid central to central
Au+Au collisions. This indicates that increasing the medium increases the
suppression of the punch through jet. To compare the suppression level, the
π0 RAA (defined by Eq. eq:RAA) [20] for same pT range (same as partner
pT )is plotted as well.

We also plot the punch through IAA as a function of partner pT in different
centralities in Fig. 4.15. Here the punch through IAA decreases with increasing
partner pT . The higher the partner pT , the more suppression in the punch
through jet.

4.8 Comparison of the Ridge, the Shoulder

and the Underlying Event Background

In Fig. 4.6, at partner pT < 3.0 GeV/c, the near side yield in Au+Au
collisions is significantly larger than that in p+p collisions for rapidity 0.5 <
|∆η| < 0.7, due to the existence of the ridge. On the away side, the shoulder
is also a sign of jet–medium interaction.

In two particle correlations, the combinatorial background increases with
the number of participants. In order extract the jet signal, this background
needs to be removed, leading one to wonder whether the ridge and shoulder
structures arise from artifacts in the combinatorial background subtraction.

If the ridge is part of the combinatorial background, then the ridge yield
should scale with the particle multiplicity in the underlying events. We study
this via the ratio of the ridge yield to the yield of the combinatorial background
integrated over the same ∆φ range between the ZYAM points. Fig. 4.16 shows
the ratio between the ridge yield and the yield of the underlying event, plot-
ted as a function of Npart for different partner pT . The ridge yield constitutes
only a few percent of the underlying event. Furthermore, the ratio decreases
at Npart > 240, which means the combinatorial background in the underlying
event increases faster than multiplicity, or Npart. Therefore the non–flatness
of the ratio means that the ridge yield is not produced by unsubtracted com-

75



A
A

 o
r 

R
he

ad
A

A
I

0

0.5

1 |<0.7η∆0.0<|
2.0-3.0 x 1.0-1.5 GeV/c

0 100 200 300

A
A

 o
r 

R
he

ad
A

A
I

0

0.5

1
AA

head I

AA R0π

2.0-3.0 x 1.5-2.0 GeV/c

0 100 200 300

A
A

 o
r 

R
he

ad
A

A
I

0

0.5

1
2.0-3.0 x 2.0-3.0 GeV/c

partN
0 100 200 300

A
A

 o
r 

R
he

ad
A

A
I

0

0.5

1 2.0-3.0 x 3.0-5.0 GeV/c
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binatorial background in the underlying event. We also observe that this ratio
increases with partner pT . This does not follow the particle spectrum, which
decreases with momentum in the underlying event. From these observations
it is clear that the ridge cannot simply be due to uncorrelated combinatorial
background.

Similar procedures have been applied to the shoulder. The ratios of the
shoulder to the combinatorial background on the away side are plotted as a
function of Npart for different partner pT , as shown in Fig. 4.17. The ratio
decreases with increasing Npart, and increases with partner pT , as was seen for
the ridge.

We compare the two ratios together, as shown in Fig. 4.18. At partner pT
below 2 GeV/c, the two ratios are consistent with each other. At pT larger
than 2 GeV/c, the ratio of the shoulder to background is smaller than the
ratio of the ridge at large Npart.
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Figure 4.16: Ratios of the ridge yield to the underlying event in near side as
a function of Npart for different partner pT bins.

78



partN
0 100 200 300 400

bg
Ysh

ou
ld

er
Y

ra
tio

 =
 

0

0.01

0.02

0.03

 = 200 GeVNNS
|<0.7η∆0.0<|

18
π29<φ∆<

18
π7

-hγinc. 
2-3x1-1.5 GeV/c
2-3x1.5-2 GeV/c
2-3x2-3 GeV/c

Figure 4.17: Ratios of the shoulder yield to the underlying event in away side
as a function of Npart for different partner pT bins.

partN
0 100 200 300

ra
tio

0

0.01

0.02

0.03 2-3x1-1.5 GeV/c
ridge
shoulder

partN
0 100 200 300

0

0.01

0.02

0.03 2-3x1.5-2 GeV/c

partN
0 100 200 300

0

0.01

0.02

0.03 2-3x2-3 GeV/c

Figure 4.18: Ratios of the ridge (shoulder) yield to the underlying event as a
function of Npart for different partner pT bins.

79



4.8.1 Medium Modification and Comparison of Near–

side and Away–side

The decomposition of the away–side allows comparison of the two jet in-
duced modifications: ridge in the near–side and shoulder in the away–side.
The two phenomena share many qualitative features. For example, as dis-
cussed above, the ridge appears to be constant over ∆η. Fig. 4.4 suggests this
is true for the shoulder as well. In fact, both of the preceding statements have
been confirmed over much larger ∆η ranges by other experiments [25, 37].
Thus, the two phenomena seem to share this feature, as also previously noted
in [61]. They are both ”exotic” (compared to elementary collisions) and ap-
pear in similar pT and centrality ranges. Thus it is very natural to look for
more quantitative connections between the two phenomena.

Fig. 4.19 compares the yields of the ridge and shoulder as a function of
Npart, in various partner pT bins. When normalized per unit pseudo–rapidity,
the yields are similar, both rising in the most central collisions to the level
of about 0.2 charged particles above 1 GeV/c (integrating over all pT bins
shown) per trigger. At partner pT below 2 GeV/c, the yield of the shoulder
is larger than the ridge, but still consistent with the ridge, within systematic
uncertainty. At partner pT larger than 2 GeV/c, the two yields are even
consistent numerically but uncertainties are increasing. At the highest partner
pT , 3–5 GeV/c, the ridge and shoulder are compatible within large systematic
uncertainties, although the yield of ridge is approximately consistent with zero.

To further investigate the partner pT dependence, we investigate the pT
and centrality trends of the ridge and shoulder separately. In Fig. 4.20, we
normalized the ridge yield to that in the most central collisions, 0–5%. The
normalized ridge yields are plotted as a function of Npart for different partner
pT bins. The centrality dependence of the ridge yield vs Npart is consistent
from 1 to 3 GeV/c. This indicates that the centrality trend scales almost the
same way for all pT bins. A similar plot for shoulder yield is shown in Fig. 4.21.
In this case, the Npart dependence is approximately the same over the whole
pT range, albeit with fewer centrality selections to reliably examine all three
pT bins.

At lower partner pT , better statistics allows for the fitting decomposition in
the away–side in finer centrality bins, especially in the most central collisions.
Since the previous plots show no dependence on pT , we compare the ridge and
shoulder yields as a function of Npart at partner pT = 1–2 GeV/c in Fig. 4.22.
The most central collisions corresponds to 0–5% centrality. The two yields
are numerically close and show a very similar pT trend for Npart up to 250.
At Npart ≈ 250, the trend of the two yields start to deviate–the yield of the
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shoulder keeps increasing while the yield of ridge shows hints (within the larger
extra systematic) of flattening or even decreasing. However, this effect hinges
on the single 0–5% point, where in other observables such as the baryon excess
[62], deviations from an otherwise monotonic increase with centrality have also
been observed.

Finally, by taking the ratio between the yield of shoulder and ridge which
also cancels part of the systematic errors, we can best examine whether or not
the two modifications scale the same way with centrality. The result is shown
in Fig. 4.23. Although hinting at more complex behavior, the ratio is consistent
with being constant in centrality within systematic uncertainties. The average
value of the ratio across all centralities is 1.29 ± 0.08 (stat. only). So, although
numerically close, they are not exactly the same–the shoulder yield is about
30% higher on average than that of the ridge across all centralities. It should
be noted that given the discussion above about the ∆η independence of both
phenomena, this ratio value is not specific to the PHENIX acceptance.
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Figure 4.22: Yields of ridge and shoulder vs. Npart at trigger pT = 2.0 – 3.0
GeV/c and partner pT = 1.0 – 2.0 GeV/c. The brown lines are the estimated
systematic error of the ridge yields due to physics assumptions regarding the
jet contamination and modification discussed in the text.

In Fig. 4.24, we calculate the average per–trigger transverse momentum
by integrating the per trigger yield weighted by the transverse momentum,
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relative to the direction of the trigger particle. A weight factor of pBT cos∆φ
is used, where ∆φ is the azimuthal angular difference between trigger and
partner particle and the weighted yields are then integrated over pT and ∆φ:

1

NA

d〈pT 〉
d∆η

=

∫

dN

dpBT
pBT cos∆φd∆φdpBT (4.8)

By weighting with pT , one can see how much transverse momentum is
carried by the ridge and shoulder respectively. After weighting with pT , the
relative strength between the ridge and shoulder is changed. The pT carried
by shoulder is consistently lower than the pT carried by ridge. The most
important reason for this change is because the shoulder peaks at ∆φ ≈ 1.1,
so after weighting with a factor of cos∆φ, the contribution is more suppressed.
Furthermore, one might argue that the pT of the trigger itself should be added
to the ridge total, and thus the imbalance could presumably be even larger.
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Figure 4.24: pT weighted yields of ridge and shoulder vs. Npart at trigger pT
= 2.0 – 3.0 GeV/c and partner pT = 1.0 – 2.0 GeV/c

4.8.2 Transverse Momentum in Near and Away side

In Fig. 4.13, the away side yield is suppressed at partner pT > 3 GeV/c and
is enhanced below 3 GeV/c. This leads to a fundamental question: where does
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the energy lost by those high pT particles go and does that energy reappear
as the enhancement of the lower pT particles?

In order to answer this question, we again use transverse momentum as our
observable. In hard scattering, transverse momentum is a conserved quantity.
In reality, it is impossible to collect all the particles. But we can use p+p
collisions as a reference for the collisions without medium effects, and see how
much transverse momentum is carried in both the near and away side in a
certain pT range. When the hard scattering happens inside the medium, the
jet–medium interaction may redistribute the transverse momentum. Compar-
ing the transverse momentum in the near and away side between Au+Au and
p+p in the same pT range may offer more information about the medium.

The per trigger yields in Fig. 4.6 and Fig. 4.13 were weighted with the mean
partner pT along the direction of the trigger particles of each pT bin according
to Eq. 4.8. We first look at partner pT between 1–2 GeV/c in Fig. 4.25. The
transverse momentum in both near and away side are plotted as a function
of Npart. In the left panel, we see, as expected, that the mean pT carried in
the near side in heavy ion collisions is significantly larger than in p+p. This
enhancement is mostly due to the existence of the ridge.

In the right panel, the awayside is plotted with its different components,
where the head corresponds to the jet like correlation, the shoulder represents
the medium modification, and the sum of the two is the total transverse mo-
mentum in the away side within the pT range. We see that the pT carried
in the head region decreases with increasing Npart, which means the pT car-
ried by the head region is lost inside the medium. This is consistent with the
jet suppression observed in previous measurements. For the shoulder region,
the trend of the transverse momentum is similar to the ridge yields, which
increases with Npart.

Adding the pT carried in head and shoulder together gives the pT carried in
total away side. The transverse momentum carried in the away side increases
with Npart. This indicates that in this partner pT range, 1–2 GeV/c, even
though the pT carried in the head region is suppressed, the pT lost in the head
region apparently reappears in the shoulder region. The excess of total away
side momentum in central Au+Au collisions also indicates that the away side
may even pick up additional momentum from the medium. Another possibility
for the enhancement may be that the momentum lost by high pT particles due
to jet quenching reappears in the lower pT region.

In Fig. 4.13, at partner pT of 3–5 GeV/c, the away side is suppressed.
In order to see if the lost momentum at high pT reappears as the transverse
momentum enhancement at low pT , we summed over partner pT between 1–5
GeV/c, which also includes the pT region where the away side is suppressed
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and the result is plotted as a function of Npart in Fig. 4.26. The trends in
Fig. 4.25 all hold here. The near side carries more pT in Au+Au than in
p+p. On the away side, the total transverse momentum in central Au+Au
collisions is larger than p+p. Even though the momentum in the away side
is smaller than p+p at pT = 3–5 GeV/c due to jet quenching, the total away
side transverse momentum in away side is still larger than p+p when summed
over 1–5 GeV/c.

partN
0 100 200 300

 [G
eV

/c
]

η∆d
>

T
d<

p
A

N1

0

0.1

0.2

0.3

0.4

2-3x1-2 GeV/c
|<0.7η∆0.0<|

near-side
total away-side
head
shoulder

partN
0 100 200 300

0

0.1

0.2

0.3

0.4

Figure 4.25: pT weighted yields of near and away side vs. Npart. Trigger pT =
2.0 – 3.0 GeV/c and partner pT = 1.0 – 2.0 GeV/c
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Figure 4.26: pT weighted yields of near and away side vs. Npart. Trigger pT =
2.0 – 3.0 GeV/c and partner pT = 1.0 – 5.0 GeV/c

Thus the pT lost by the head appears to be recovered as the pT gained in
the shoulder. This could be the first evidence of a direct connection between
the awayside jet correlation and the shoulder enhancement, such that the
quenched jet pT is pushed or redirected into the shoulder, as would be the case
in many of the speculated enhancement sources [42, 63, 64, 65, 66].
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On the other hand, since the total transverse momentum summed over 1–5
GeV/c in the away side is enhanced in Au+Au compared to p+p, this implies
that the momentum enhancement in low partner pT is more than the transverse
momentum lost in the away side at high partner pT . Since the momentum lost
at high pT can not account for the enhancement of transverse momentum at
low pT , this suggests that the jet may also carry out some particles from the
medium.

In this analysis, the partner pT range is 1–5 GeV/c. Even though we
did not include the full possible pT range, the result does not change if we
extend the measured pT range. In [23], for partner pT above 5 GeV/c, the
conditional yield is about 2 orders of magnitude smaller than the conditional
yields at 1 GeV/c, so even weighted with momentum, the contribution to the
total transverse momentum is negligible. Also in [23], for partner pT below
1 GeV/c, the away side yield in Au+Au is consistently larger than in p+p.
When we weighting with pT , the away side in Au+Au still carries more pT
than p+p. So this does not change the conclusion that the total transverse
momentum in away side in Au+Au is larger than in p+p.

4.9 Spectra and Truncated Mean pT

The spectra of the ridge, head and shoulder are measured and plotted in
Fig. 4.27. In order to measure the trend of the spectra, we use the truncated
mean pT , < p′T > to describe the shape of the spectra. The truncated mean
pT is defined as

< p′T >=

∑pmax
T

pmin
T

pT
dN
dpT

dpT
∑pmax

T

pmin
T

dN
dpT

dpT
− pminT (4.9)

Here the partner pT range is 1–5 GeV/c. The truncated mean pT as a
function of Npart for each component is shown in Fig. 4.28. Both the near and
away–side yield for p+p are measured as well as a reference for the hard scat-
tering. The truncated mean pT of the inclusive hadrons is used to represent the
medium. Within the large ridge uncertainties, ridge and shoulder are consis-
tent as is expected from previous discussions. Despite the large uncertainties,
it appears that the most probable value for the ridge < p′T > is in fact the
same as the shoulder. Both are consistently softer than their p+p counter part,
which likely means neither comes purely from hard scattering processes. But
when comparing with the spectra of the inclusive charged hadrons, the shoul-
der is slightly harder while the ridge is consistent with the inclusive charged
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hadrons. This is in contrast to the the head region, where in central collisions,
< p′T > is even lower than inclusive charged hadrons. As in [23], this should
be interpreted as the punch through jet being so suppressed that the yield is
in fact close to completely gone. Going from central to peripheral, the < p′T >
rises, which is consistent with decreasing suppression.

4.10 Summary

In this analysis, we present the inclusive photon–hadron two particle ∆η–
∆φ correlations measured in Au+Au collisions at

√
sNN = 200 GeV. We

decompose correlation function in ∆η and ∆φ to disentangle contributions
from the medium and the punch–through and trigger jets. Upon correcting the
underlying event for elliptic flow, the ridge is observed for associated particle
pT below 3 GeV/c; it is broad in rapidity and narrow in ∆φ. The away side
correlated particle yield is enhanced in central collisions. The yield of particles
in the shoulder grows with centrality while the away side punch–through jet
is suppressed. Remarkably, the ridge closely resembles the shoulder in the
centrality dependence of particle yield and spectra. The truncated mean pT of
the ridge and shoulder are also consistent with the inclusive charged hadrons
from the medium, which indicates the two structures are strongly related with
the medium. With more understanding of the shape of the underlying event
background, the shape of the subtracted correlation function may be changed
as well, and so does our understanding of jet–medium interaction.
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Part III

Analysis: vn
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Chapter 5

Measurement of Effects on Higher Harmonics

of the Collective Flow Correlations

5.1 Introduction

There are several explanations for the ridge and shoulder structures (see
Sec. 3.1. However, higher harmonics of the collective flow have recently at-
tracted a lot of attention [67]. v3 is the third harmonic of the particle angular
distribution, which corresponds to cos 3∆φ. v3 has an intrinsic three peak
structure over 2π, so it is natural to link v3 with both the ridge and shoulder
[67].

In a collision between two identical nuclei, by definition, at mid–rapidity
there should be no odd harmonics in the particle distributions due to left–right
symmetry. But in reality, the shape of the nuclei are not perfectly spherical.
The fluctuations of the shape breaks the left right symmetry, the odd moments
of the harmonics, such as v3 become possible. Elliptic flow, or v2, has become
a standard measure of collective flow. v2 is measured with respect to the
direction of the reaction plane, ψ, with the forward detectors, such as the
Reaction Plane Detector (RXN), Beam Beam Counter (BBC), or Muon Piston
Calorimeter (MPC), which is a forward electromagnetic calorimeter located
at 3.1 < |η| < 3.7 . Then we can measure the particle azimuthal angular
distribution with respect to the reaction plane and extract the v2 [19].

One way to measure v3 is to measure the orientation of the third event
plane, ψ3, then follow a similar method to that used to measure v2 [68]. Two
particle correlations provide another way to measure vn. The two particles
come from the same event, so must share the same reaction plane direction ψ.
By taking the relative azimuthal angle of the two particles, the direction of
the reaction plane cancels out automatically. So there is no need to measure
the direction of the reaction plane. The Fourier analysis of the correlation
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function yields explicitly all n–th order Fourier coefficients. This method was
first applied in early PHENIX v2 measurements [69]. We have now applied
Fourier expansions on two particle correlations to extract the first four flow
coefficients, v1, v2, v3 and v4.

5.2 vn in Event Plane Method

As mentioned above, there are two major methods to measure vn: by
reconstructing the event plane and by analysis of two particle correlations.
Here we briefly describe vn measurements with the event plane method. This is
a well established approach to extract v2 [48, 18, 19], as described in Sec. 3.5.
PHENIX now extends the event plane method to higher harmonics. The
event plane has been determined with the Reaction Plane Detector (RXN,
1 < |η| < 2.8, the Beam–Beam Counter (BBC, 3.1 < |η| < 3.9) and the Muon
Piston Calorimeter (MPC, 3.1 < |η| < 3.7). The nth event plane is determined
by the following relation

Qx ≡ | ~Qn| cos(nψn) =
M
∑

i

wi cos(nφi), (5.1)

Qy ≡ | ~Qn| sin(nψn) =
M
∑

i

wi sin(nφi), (5.2)

ψn =
1

n
tan−1

(

Qy

Qx

)

, (5.3)

which is the same as Eq. 5.16. The vn with respect of the event plane ψn can
be measured as

vn(ψn) =
cos(n[φ− ψn])

∆ {ψn}
(5.4)

where ∆{ψn} is the event plane resolution.
The correlation strength,

〈

cos(j[ψAn − ψBm])
〉

between various forward de-
tectors are measured as a function of centrality. Here A, B are sub–events
in forward detectors in different directions, separated by at least 5 units of
pseudorapidity. The results are displayed in Fig. 5.1. Fig. 5.1(a) and (b) are
cases where m = n. Strong correlations are found in all those cases. Note for
n = 1, there is a anti–correlation, which is expected as a result of conservation
of momentum in transverse direction.

94



The results are shown for n 6= m in Fig. 5.1(c) and (d). We see that the
first and second event planes are correlated with each other. The second and
fourth planes have similar correlations, but with smaller strength. This agrees
with our understanding that the even harmonics are strongly correlated with
each other because the shape of the colliding region is close to an almond
shape, for which ψ2 and ψ4 should line up together if the shape is perfectly
symmetric. But when correlating the with second and third plane, which is
shown in Fig. 5.1(d) and the correlation strengths are scaled by a factor of 20,
we find that the second and third plane are basically uncorrelated. This shows
that ψ3 does not correlate with ψ2, since the origin of ψ3 is from fluctuations.
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Figure 5.1: Raw correlation strengths of the event planes for various detector
combinations as a function of collision centrality. The event planes are mea-
sured with the following forward detectors: (a) RXN North, (b) BBC South,
(c) MPC North, and (d) MPC South.
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The results of v2(ψ2), v3(ψ3) and v4(ψ4) as a function of pT in various
centralities are shown in Fig. 5.2. Here the event plane is determined with the
Reaction Plane Detector (RXN). We see a significant non–zero values for v3
and v4, increasing with pT , similar to v2. For v2 and v4, the values increase
from central to mid–peripheral collisions, as expected from increasing shape
anisotropy. v3 does not show a similar trend. The value of v3 in all centralities
is very similar. The measured v2 and v3 are compared with two hydrodynamic
models [67] and [70]. These models will be described in detail in Chapter 7.
Both models agrees with data very well, especially for pT below 1 GeV/c.

5.3 Analysis

The data is taken from the 2007 run (run7) with Au+Au at
√
sNN = 200

GeV. Some special runs such as zero field runs, converter runs are removed.
We also remove runs which has fewer than 1 million events. The event selection
is similar to previous studies, which require the event centralities between 0–
92% and the z–vertex measured by BBC is within 30 cm. For this two particle
correlation measurement, both particles are charged hadrons.

We also applied ∆η cuts between particle pairs. From previous analysis,
we know in the η acceptance of the PHENIX central arms (|η| < 0.35 or
|∆η| < 0.7, there is a strong jet contribution at this η region. In order to
remove the jet contributions as much as possible while still keeping enough
singles, the η difference between the pairs with ∆η < 0.3 are removed.

5.4 vn from Correlation Function Method

5.4.1 Fourier Expansion

In a typical elliptic flow analysis, the particle distribution is written as
Eq. 5.5

f(φ) =
dN(pT )

dφ
= b0

∑

(1 + 2vn cos(n(φ− ψn))) (5.5)

, where ψn is the direction of the reaction plane. Here vn is defined as

< einφ >=

∫

f(∆φ)einφdφ = vne
iψn (5.6)

For particle pairs, where φ1 = φ, φ2 = φ+∆φ, the distribution is sensitive to
vn, where

96



0 1 2 3

0.1

0.2

0.3

Au+Au
 = 200 GeV

NN
s

(a) 0-10%

0 1 2 3

0.1

0.2

0.3

}
2

ψ{2v
}

3
ψ{3v

}
4

ψ{4v

(b)

0 1 2 3

0.1

0.2

0.3 (c) 10-20%

0 1 2 3

0.1

0.2

0.3

(d) Alver et al
Schenke et al

0 1 2 3

0.1

0.2

0.3 (e) 20-30%

0 1 2 3

0.1

0.2

0.3

(f)

0 1 2 3

0.1

0.2

0.3 (g) 30-40%

0 1 2 3

0.1

0.2

0.3

(h)

0 1 2 3

0.1

0.2

0.3 (i) 40-50%

0 1 2 3

0.1

0.2

0.3

(j)

0 1 2 3

0.1

0.2

0.3 (k) 50-60%

0 1 2 3

0.1

0.2

0.3 (l)

 [GeV/c]
T

p

nv

Figure 5.2: vn{Ψn} vs. pT measured via the event plane method. The curves
are calculations from two hydrodynamic models: Alver et al. [67] and Schenke
et al. [70].
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< ein∆φ >=< einφ1e−inφ2 >=< einφ1 >< e−inφ2 >= (vn)
2 (5.7)

When both trigger and partner particles are below 1 GeV/c, the contribution
from jet particle correlations can be ignored. And the two particle azimuthal
correlations can be expanded as

dNpair(pT )

d∆φ
∝

∑

(1 + 2cn cos(n∆φ)) (5.8)

From Eq. 5.8, it is clear that there is no need to determine the direction of the
reaction plane, ψ, when using the correlation function method. This simplifi-
cation is because both particles are from the same event, and therefore share
the same reaction plane. When calculating the difference of the azimuthal
angle of the two, ψ cancels out naturally.

In standard two particle correlation analyses in PHENIX [21, 22, 23, 24],
the combinatorial background is assumed to be factorisable, that is

c2(p
a
T , p

b
T ) = v2(p

a
T )× v2(p

b
T ) (5.9)

We follow the same assumption, for the higher harmonics,

cn(p
a
T , p

b
T ) = vn(p

a
T )× vn(p

b
T ) (5.10)

When the pT of the trigger is the same as the partner pT , then Eq. 5.10 can
be reduced to Eq. 5.11

cn(p
a
T , p

a
T ) = v2n(p

a
T ) (5.11)

Upon extracting the Fourier Coefficients of the correlation functions at low pT ,
we obtain vn.

The analysis is constructed in the following order:

• measure the correlation functions in various pT and centrality bins

• extract the Fourier coefficients, cn

• obtain the vn coefficients

5.4.2 Correlation Functions

The Correlation functions are constructed for particle pT from 0.5 to 3.0
GeV/c, in six centrality bins from 0–10% to 50–60%. Some of the correlation
functions are shown as examples in Fig. 5.3 and Fig. 5.4. The two plots are
for particle pT between 0.5–0.6 and 1.5–2.0 GeV/c in six centralities.
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Figure 5.3: Correlation functions for trigger and partner at 0.5–0.6 GeV/c at
various centralities. The blue curve is the sum of the Fourier spectra.
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Figure 5.4: Correlation functions for trigger and partner at 1.5–2.0 GeV/c at
various centralities. The blue curve is the sum of the Fourier spectra.
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5.4.3 Extracting cn

For the correlation functions shown in Fig. 5.3 and Fig. 5.4, we use Eq. 5.8
to extract the Fourier coefficients, cn. Typical results for cn are shown in
Fig. 5.5, where the horizontal axis indicates the nth Fourier Coefficients. In
these plots, we see that the second Fourier coefficients, which are equivalent
to v2, are significantly larger than the other coefficients. However the first and
third components are also significant.

ith coeff
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-410

-310

-210
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Figure 5.5: cn for trigger and partner at 1.5–2.0 GeV/c at various centralities.

5.4.4 Extracting vn

Since the correlation functions used to obtain cn are symmetric in trigger
and partner pT , we can apply Eq. 5.11 to go from cn to vn. We will focus on
the first four Fourier moments, v1, v2, v3 and v4.

We plot each vn as a function of Npart and pT . The results of vn vs Npart

are shown as Figures 5.6 to 5.9. v1 shown in Fig. 5.6, is independent of pT
and decreases when going from peripheral to central collisions. For v2 shown
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in Fig. 5.7, the results are compared with previous PHENIX measurements
[19] and shows good agreement. Fig. 5.8 shows a non–zero value of v3 for all
centralities and all pT . The general trend here is (i)v3 decreases with increasing
Npart; (ii) v3 increases with pT . For v4 (Fig. 5.9), due to statistics, v4 fluctuates
much more than lower vns. And because some of the c4 values are negative,
we set them to be zero to avoid taking the square root of a negative value.
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Figure 5.6: v1 of various pT as a function of Npart.

In Fig. 5.10 to Fig. 5.13, we plot the vn as a function of pT . Fig. 5.10
shows the trend of v1. The v1 is flat below 1 GeV, and increases with pT at
pT > 1 GeV/c. There is no obvious difference between different centralities
at pT > 1 GeV/c. Fig. 5.11 plots v2 vs pT . The result is also compared
with previous PHENIX measurement, which is measured by reaction plane
method [19]. Both measurement agrees well at pT < 1 GeV/c. At pT > 1
GeV/c, there v2 from two particle correlation method are slightly larger than
the reaction plane method. The deviation increases from central to mid–
peripheral collisions. The larger deviation at mid–peripheral and high pT may
come from the larger jet contamination. The result of v3 is shown in Fig. 5.12.
v3 is non–zero and increases with pT . v3 also increases from central (centrality
0–10%) to mid–peripheral (centrality 50–60%) collisions. The v4 measurement
shown in Fig. 5.13 is similar to v2, which also increases with pT .
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Figure 5.7: v2 of various pT as a function of Npart. The dash lines are v2
measurements from [19].
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Figure 5.8: v3 of various pT as a function of Npart.
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Figure 5.9: v4 of various pT as a function of Npart.
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Figure 5.10: v1 of various centralities as a function of pT .
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Figure 5.11: v2 of various centralities as a function of pT . The dash lines are
v2 measurements from reference [19].

 [GeV/c]
T

p
0 1 2 3 4

3v

0

0.05

0.1

0.15

0.2
3v

0-10%
10-20%
20-30%
30-40%
40-50%
50-60%

Figure 5.12: v3 of various centralities as a function of pT .
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Figure 5.13: v4 of various centralities as a function of pT

5.5 Factorization of vn

In the previous section, we made an assumption that

cn(p
trig
T , ppartT ) = vn(p

trig
T )× vn(p

part
T ) (5.12)

So when the trigger and the associated particle are at the same pT , Eq. 5.12
can be reduced to

cn(pT ) = vn(pT )
2 (5.13)

Here we directly test this assumption. Eq. 5.13 is called the symmetric pT
method and Eq. 5.12 is the asymmetric pT method. For the symmetric pT
method, both the trigger and the associated particles have the same pT . In
the case of the asymmetric pT method, the pT of the trigger particle is fixed
at 0.5–1.0 GeV/c and the correlation function is measured with the associated
particle in various pT bins.

The v2 and v3 values of both the symmetric and asymmetric pT methods
are presented in Fig. 5.14 for v2 and Fig. 5.15 for v3 respectively. The top
panel of Fig. 5.14 compares the v2 measured by the symmetric (asymmetric)
pT method in red (black) in six different centrality bins. Both methods show
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good agreement. The value (vasymmetric2 /vsymmetric2 )-1 is plotted in the lower
panel. This ratio shows the two measurements agree within better than 1%
at low pT and deviate at the 5% level at highest pT . Similar comparison for
v3 is shown in Fig. 5.15. Both methods agree well at pT < 2.5 GeV/c. The
deviation is the largest at 50–60% and at pT > 2.5 GeV/c.

5.6 ∆η dependence

In two particle azimuthal correlations, the ∆η separation between the par-
ticle pairs is important. At particle pT below 1 GeV/c, the ∆η cut can help
remove the HBT peak.

At higher particle pT , the jet start to contribute in two particle correlations.
The nearside jet has a Gaussian jet cone size about 0.3 in ∆η and ∆φ direction.
By requiring the particle pairs separate by 0.3 units of pseudorapidity, we can
remove about 67% of the correlated near side pairs which are coming from
jets. On the other hand, the ridge is constant along the η direction, so it will
not be effected by the η cut.

For the awayside, the awayside jet swings along the full ∆η acceptance of
PHENIX central arm, |∆η| < 0.7, as shown in Fig. 4.1(b). So the ∆η cut can
not remove the awayside jet contributions, which will bias the vn measurement.

In the current analysis, we require the two particles are separated by 0.3
unit in ∆η, or |∆η| > 0.3. We vary the ∆η cut to 0.5 to further reduce
the contribution of the nearside jet. Fig. 5.16, Fig. 5.17 and Fig. 5.18 show
good agreement between vn values from two ∆η cuts, which indicates we have
removed a significant amount of nearside jet pairs with |∆η| > 0.3 cut.

5.7 Comparison with v2 measurements from

PHENIX

The v2 measurement in this analysis, or the two particle correlation method,
is compared with the latest v2 measurement from PHENIX [19]. In [19],
PHENIX uses the reaction plane method to measure v2.

5.7.1 pT vs Npart

We compare the v2 measured via two particle correlations with the v2
measurement from Fig. 2 in [19] as a function of Npart. The pT bin used here
is 0.5–0.8 GeV/c, and with various centralities from 0–5% up to 40–50%, or
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Npart ≈ 60. The comparison is shown in Fig. 5.19. The v2 in this analysis is
consistent with v2 values from [19] for Npart > 140. When Npart decreases
from 140, we see v2 values are larger than data from [19].

In [19], the reaction plane is determined by several different detectors.
Then the v2 is measured with respect to each of these reaction planes. We
compare our results with the v2 obtained using the Muon Piston Calorimeter
(MPC) and the outer layer of the Reaction Plane Detector (RXNo). The MPC
covers η from 3.1–3.7, while RXNo has an η from 1–1.5. When determining
the reaction plane ψ2, the η position of the forward detector matters. This
is because at smaller η, there is a stronger influence from jet particles which
will bias the measurement of the reaction plane This bias is known as the
“non–flow” effect. Consequently, reaction plane determined at smaller η tend
to have higher v2 values.

We take the ratio between the v2 measured in this analysis via the two parti-
cle correlation method, v2{2P}, and v2 determined with the MPC, v2{ψMPC

2 }.
The results are shown in Fig. 5.20. Fig. 5.21 is a similar plot comparing with v2
determined with RXNo, v2{ψRXNo2 }. We see that for Npart below 260, v2{2P}
is larger than v2{ψMPC

2 } (v2{ψRXNo2 }) by 6 (2)%. The largest difference is for
most central collisions, where the deviation is 25 (12)%. In two particle corre-
lation measurements, both particles are detected within the PHENIX central
arms, where the maximum ∆η separation is ∆η = 0.7. On the other hand,
when using a forward detector to determine the reaction plane and correlated
with charged particles in central arm, the η separation is larger than 1. So
with smaller η separation, we expect a somewhat higher v2 value in the two
particle correlation case.

5.7.2 v2 vs pT

We also compare the centrality dependence of v2 vs pT with previous results
[19], using the same centrality bins as in Fig. 3 of Reference [19]. The pT range
used in the comparison is from 0.5–1.0 GeV/c. We take the ratio between the
measurements and values from [19]. The results are plotted in Fig. 5.22.
Fig. 5.23 is the same plot as Fig. 5.22, the only difference is the range of the
Y axis is adjusted to focus the range between 0.98–1.15. The ratio is very
flat with pT . The largest deviation is for 0–5% central collisions, which has
about a 20–30% higher v2 than in [19]. For other centralities, the ratios are
near 5 to 7%, except at 50–60% centrality, where the difference is about 10%.
This shows that at low pT , the v2 from the two particle correlation method is
consistent with v2 from the reaction plane method.
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Figure 5.19: v2 in this analysis (black points) compared with v2 measured by
reaction plane method (dashline) [19]. Inclusive charged hadrons with pT =
0.5–0.8 GeV/c.
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2 }, where

the second event plane, ψ2, is determined by the Muon Piston Calorimeter
(MPC) in [19].

5.7.3 Systematic Uncertainties of vn

In the previous discussion, we used two particle correlations to measure vn
where n = 1, 2, 3, 4. However, there are four different variations. We have
two different |∆η| cuts (0.3 and 0.5), as well as symmetric and asymmetric pT
pairs. We use these four measurements to get our vn and the corresponding
systematic error. The the mean vn is the average of the four measurements.
The statistical error is the larger of the symmetric and asymmetric pairs, for
the ∆η cut of 0.3. We use this instead of ∆η = 0.5, because the statistics
between the two is almost a factor of 10. The highest and lowest non–zero
points are used to determine the systematic error. The final v2 and v3 values
are plotted in Fig. 5.24 and Fig. 5.25.

5.7.4 vn{2P} vs vn{ψn}
We also compared with the PHENIX published result [68], as shown in

Fig. 5.26 and Fig. 5.27.
In general, the measurement is higher than results from [68] but still

consistent within the systematic error.
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where the second event plane, ψ2, is determined by the outer sector of the
Reaction Plane Detector (RXNo)in [19].
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Figure 5.23: Same as Fig. 5.22, only the Y range is changed.

v2 from this analysis, v2{2P}, with the result from reference [68] as v2{ψ2},
which is shown in Fig. 5.26. For points with pT from 0.5–1.0 GeV/c in all cen-
tralities, the measurements agree within 5%. As pT goes up, the two methods
begin to deviate significantly by as much as 10% in mid–central collisions and
more than 20% at central collisions at 3 GeV/c.

We are not surprised by this result for several reasons. At pT > 1 GeV/c,
the jet contribution starts to increase. In the current analysis, we only have
an η cut, which removes particle pairs with |∆η| < 0.3. This pair cut removes
some of the jet, or ”non–flow” pairs, but there is still a significant contribution
from non–flow which is not being removed. Reference [19], showed that when
the reaction plane is determined with detectors at smaller η, the v2 value
becomes slightly larger.

Fig. 5.27 compares v3{2P} values from this analysis with values from [68],
v3{ψ3}, at pT = 0.5–3.0 GeV/c. The two measurement agree within 5%, but
deviate to about 20% at high pT . We know that at high pT , the jet contribution
is significant in two particle correlations [23]. Furthermore, jet suppression
will increase the third harmonic, since it decreases the correlation strength at
∆φ = π.

This comparison demonstrate two things. First, in the low pT region, pT =
0.5–1.0 GeV/c, v2 and v3 measured by the reaction plane method, vn{ψn}, and
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two particle correlation method, vn{2P}, are consistent in all centralities from
0–10% to 50–60%. Second, at particle pT above 1 GeV/c, since jet fragments
are not completely removed, larger vn{2P} values compared to reaction plane
methods, vn{ψn}, however the methods still agree within systematic errors.
This also indicates the jet contributions at high pT needs proper treatment.
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Figure 5.26: v2 measured by this analysis,v2{2P} (red) and from reference
[68], v2{ψ2}(blue) with systematic error.

5.8 Glauber Monte Carlo Simulation

In relativistic hydrodynamic models, the elliptic flow comes from the pres-
sure gradient due to geometrical anisotropy or eccentricity, ε2=< y2-x2 >/<
y2+x2 >. One of the important prediction is v2/ε2, which takes out the geo-
metrical effect, should be independent on centrality [71]. Previously, PHENIX
has shown that there is a v2/ε2 scaling as shown in Fig. 5.28 [18]. When v2/ε2
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Figure 5.27: v3 measured by this analysis,v3{2P} (red) and from reference
[68], v3{ψ3}(blue) with systematic error.
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is plotted as a function of pT , all curves are following a universal curve inde-
pendent of colliding systems and centralities. Along this line, there are several
predictions which extend similar trend into v3 [67, 72]. In order to test the pre-
diction of vn/εn scaling, we use Glauber Monte Carlo simulations to calculate
the eccentricity (ε2) or triangularity (ε3).

5.8.1 Eccentricity and Triangularity

There are two kinds of eccentricity. The first kind is the “standard ec-
centricity”, εstandard2 , where the x–axis is along the direction of the impact
parameter, and the y–axis goes through the origin, which is defined as the
center of the impact parameter. εstandard2 is defined as

ε2 =
〈y2 − x2〉
〈y2 + x2〉 (5.14)

There is another kind of eccentricity, the “participant eccentricity”, where
the origin is shifted to the center of the mass makes < x >= 0 and < y >= 0.
Eq. 5.14 can be written as Eq. 5.15:

ε2 =

√

〈r2 cos(2φpart)〉2 + 〈r2 sin(2φpart)〉2

〈r2〉 (5.15)

where r and φpart are the polar coordinates of the participant nucleons, nucle-
ons involved in the collision, relative to the center of the mass. The short axis
of the ellipse, ψ2 is pointing to the direction

ψ2 =
tan−1(

〈r2 sin(2φpart)〉
〈r2 cos(2φpart)〉

) + π

2
(5.16)

Since the pressure gradient is the largest in the direction of short axis, or
direction of ψ2, the strength of the collective flow should also be the largest in
this direction.

In order to test the prediction of the scaling property v3/ε3, we need to
calculate the triangularity, ε3. We adopt the definition of ε3 used in [67],
which is the natural extension of Eq. 5.15. ε3 is defined as

ε3 =

√

〈r2 cos(3φpart)〉2 + 〈r2 sin(3φpart)〉2

〈r2〉 (5.17)
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Figure 5.28: v2 measurement in (a)Au+Au; (b)Cu+Cu; (c)v2 scaled with pT
integrated v2 [18]
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We can also define the direction of the event plane for the n–th moment, ψn.
The general equation of ψn is an generalized form of Eq. 5.16, which is defined
as Eq. 5.18:

ψn =
tan−1(

〈r2 sin(nφpart)〉
〈r2 cos(nφpart)〉

) + π

n
(5.18)

5.8.2 Glauber Monte Carlo Simulation

Glauber model is used to calculate the geometrical related quantities, such
as ε2, ε3, ψ2 and ψ3. Glauber model assumes the nuclei consists of individ-
ual nucleons. Each nucleon is distributed randomly within the radius of the
nucleus. This introduces shape fluctuations naturally. In order to estimate
the initial collision geometrical parameters, we run Monte Carlo simulations
event–by–event and measure these quantities statistically. In this analysis, we
use the PHOBOS Glauber Monte Carlo Simulation [73] to measure the eccen-
tricity and triangularity. We simulated 600,000 events. Some key parameters
are listed below

• The inelastic nucleon–nucleon cross section at 200 GeV is σNN = 42 mb

• The minimum nucleon separation distance = 0.4 fm

• The nuclear charge density is described by a Woods–Saxon function in

the form with three parameters: ρ(r) = ρ0
1+w( r

R
)2

1+exp r−R
a

, where ρ0 is the

nuclear density, R is the nuclear radius, a is the skin depth and w is the
shape deviation from a spherical shape. For Au nuclei, R = 6.38 fm, a
= 0.535 fm, w = 0

A typical example of a Au+Au collision in Glauber simulations is shown in
Fig. 5.29. The number of participants and number of binary nucleon–nucleon
collisions are calculated for each event. The direction of the n–th event plane
ψn, ε2 and ε3 are also calculated with Eq. 5.15, Eq. 5.17 and Eq. 5.18. From
this example, it is clear to see that the nuclei consists of randomly distributed
nucleons. The colliding area is not a perfect almond shape. The direction
of ψ2 is roughly long the direction of the impact parameter. ψ3 is pointing
to a random direction which is because the origin of ψ3 is due to geometrical
fluctuations.

With 600000 events, Fig. 5.30 and Fig. 5.31 are the participant eccentricity
ε2 and ε3 plotted as a function of Npart. In both cases, even though the events
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have the same Npart, but because of the event–by–event nucleon distribution
fluctuations, we have a distribution of ε2 and ε3.

We also calculated the average ε1, ε2 and ε3 as function of Npart, shown in
Fig. 5.32. We see all three εn are the smallest at highest Npart. This is because
at this situation, the two nuclei collide almost completely, which the collision
region is almost like a circular shape. When Npart decreases, all ε increases,
because the anisotropy of the colliding area becomes larger. We also note the
ε2 is consistently larger than ε3, because ε2 is mostly due to the geometrical
shape, but ε3 comes from fluctuations.
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Figure 5.29: An example of collision of two gold nuclei in Glauber model.
The solid circles are nucleons partipating the collision; the dash circles are
spectators which do not participating the collision. The solid green (magenta)
line is pointing to the direction of ψ2 (ψ3). The dashlines are the 2 (3) fold
symmetry directions of ψ2 (ψ3).

5.8.3 Calculating Eccentricity from Glauber Simulation

Here we extract average eccentricity in different centralities. Here the cen-
trality is defined by the distribution of number of participants. The most
central 5% collisions or 0–5% centrality is defined as top 5% of events which
has the largest number of participants. Then we can use this distribution to
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determine the centrality binning. The central value of the eccentricity is the
average eccentricity in the centrality bin.

The ε2 and ε3 as a function of centrality are calculated from Fig. 5.30 and
Fig. 5.31, and are tabulated in Table 5.1 and Table 5.2. Values in Table 5.1
are consistent with internal PHENIX measurements.

5.8.4 Systematic Error of εn

We estimate the systematic error of ε2 and ε3 by varying the following
parameters:

• Change the nucleon–nucleon cross section from 42 mb to 39 mb.

• Change the nucleon–nucleon cross section from 42 mb to 45 mb.

• Change the Woods–Saxon function parameters from R = 6.38 fm, a =
0.535 fm to R = 6.65 fm, a = 0.55 fm

• Change the Woods–Saxon function parameters from R = 6.38 fm, a =
0.535 fm to R = 6.25 fm, a = 0.53 fm

• Change the minimum distance between nucleons from 0.40 fm to 0.36
fm
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• Change the minimum distance between nucleons from 0.40 fm to 0.44
fm

The comparison of these systematic checks are shown in Fig. 5.33 and
Fig. 5.35. The ratio between the systematic checks and the default value
shows that the systematic error due to the description of the nuclear geometry
of ε2(ε3) is about 2–4%(2–6%).

The final systematic error of ε2(ε3) for the given centrality is the quadratic
sum of all differences compare to the values from default parameters. System-
atic errors in both directions are calculated separately, and the larger of the
two is used as the final systematic errors. The results are listed in Table 5.1
and Table 5.2.
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Figure 5.33: Participant eccentricity ε2 compared with various systematic
checks

5.9 Scaling

When assuming there is no shear viscosity, ideal hydrodynamic calculation
predicts when v2 scales with eccentricity, that is v2/ε2 as a function of pT is a
universal curve, which is independent of centrality and collision species [71].
This relation can be written as
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v2(cent, pT ) = ε× v2(pT ) (5.19)

where v2(cent, pT ) is the centrality and pT dependent v2, and v2(pT ) only
depends on pT . From Eq. 5.19, if we integrated over pT , what remains should
be proportional to the eccentricity, ε.

This property has been shown in previous PHENIX measurement of v2
[18]. In [18], eccentricity is not calculated explicitly. In hydro predictions, the
eccentricity is proportional to the pT integrated v2 (ε = v2 × k). So, reference
[18] uses pT the integrated v2 times a factor of k = 3.1 as a proxy for the
eccentricity. In reference [18], when v2 is rescaled by ε or pT integrated v2
times a constant factor of k = 3.1, all v2 vs pT curves follow an universal trend.

In various hydrodynamical calculations [67, 72, 74], the v3 value should
be proportional to the magnitude of the triangularity or the ε3. Therefore a
trend similar to v2/ε2 for v3 has also been shown, which says that v3/ε3 also
follows a similar scaling. Or v3(pT , centrality) = ε3 × v3(pT ).

Following the methods described in [18], we test the v2/(int. v2) scal-
ing and extend the study to v3/(int v3). We also use the ε2 and ε3 value
from the Glauber Monte Carlo described in the previous section to search for
the existence of scaling. In this scaling analysis, we use the vn values from
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Table 5.1: ε2 measured via Glauber Monte Carlo simulations in different cen-
tralities.

centrality ε2 variance sys. error
0–10% 0.105499 0.0582523 0.0048
10–20% 0.20173 0.0855551 0.0084
20–30% 0.283996 0.106145 0.0085
30–40% 0.358557 0.131047 0.0060
40–50% 0.428096 0.15094 0.0098
50–60% 0.494127 0.172629 0.0094
60–70% 0.571483 0.199686 0.013
70–80% 0.671808 0.207904 0.011
80–90% 0.719405 0.221362 0.015

Table 5.2: ε3 measured via Glauber Monte Carlo simulations in different cen-
tralities.

centrality ε3 variance sys. error
0–10% 0.0870931 0.047212 0.0010
10–20% 0.125344 0.0659116 0.0049
20–30% 0.161643 0.0837192 0.0088
30–40% 0.195772 0.101686 0.0040
40–50% 0.239647 0.12418 0.0036
50–60% 0.295354 0.14581 0.0098
60–70% 0.342285 0.169247 0.0067
70–80% 0.362377 0.183709 0.0077
80–90% 0.358197 0.215002 0.012

Chapter 5.7.3.

5.9.1 Scaling with pT Integrated vn

The pT integrated vn is calculated by Eq. 5.20:

int.vn =

∫

vn(pT )
dN
dpT

dpT
∫

dN
dpT

dpT
(5.20)

v2 and v3 is summed over 0.5–3.0 GeV/c. The spectra for inclusive charged
hadrons, dN/dpT , are obtained from the published charged hadron spectra
measured by PHENIX [56]. The integrated v2 (v3) are listed in Table 5.3
and Table 5.4.
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Fig. 5.37 shows v2 as function of pT in different centralities as measured
in this analysis. The dash lines are v2 measurements from PHENIX ??. The
agreement between the two measurement are good. We rescale the v2 by the
pT integrated v2, which is tabulated in Table 5.3. The result is shown in
Fig. 5.38, clearly that all six centrality bins, from 0–10% to 50–60%, follow a
universal trend. The universality is also visible in Fig. 5.39, where the scaled
v2 is plotted vs Npart. The flatness of the curves show the consistency of the
scaled v2. This suggest the system is locally thermalized rapidly.

Similar properties are also found in v3. Fig. 5.40 is v3 vs pT in six centrality
bins. After scaled with pT integrated v3, as shown in Fig. 5.41, all v3/(pT
integrated v3) curves again lined up together as the v2 case shown in Fig. 5.38.
Same trend is also seen when scaled v3 is plotted vs Npart as plotted in Fig. 5.42.

This analysis shows that if we assume v2(cent, pT ) (v3(cent, pT )) all fol-
lows a universal curve, v2(pT ) (v3(pT )), which is modulate by the centrality
dependent eccentricity (triangularity).
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Figure 5.37: v2 of various centralities as a function of pT . Dash lines are
PPG098 measurement.
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Figure 5.38: v2/(pT integrated v2) vs pT in various centralities
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Figure 5.39: v2/(pT integrated v2) vs Npart in various pT bins.
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Figure 5.40: v3 of various centralities as a function of pT .
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Figure 5.41: v3/(pT integrated v3) vs pT in various centralities
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Figure 5.42: v3/(pT integrated v3) vs Npart in various pT bins.

5.9.2 Scaling with Glauber ε2 and ε3

We use the ε2 and ε3 measured by Glauber Monte Carlo simulations listed
in Table 5.1 and Table 5.2 as an alternative way to study scaling by plotting
vn/εn. The results are shown in Fig. 5.43, Fig. 5.44 (v2), and Fig. 5.45, Fig. 5.46
(v3).

v2/ε2 as a function of Npart is plotted in Fig. 5.44. Scaling would be in-
dicated by a flat distribution of v2/ε2. The scaling holds approximately at
low pT when Npart is larger than 100, but not for the most central collisions

Table 5.3: pT integrated v2 values (0.5–3.0 GeV/c) from two particle correla-
tion method in this analysis.

centrality int. v2 stat err
0–10% 0.0409 0.0003
10–20% 0.0717 0.0002
20–30% 0.0967 0.0002
30–40% 0.1139 0.0002
40–50% 0.1233 0.0003
50–60% 0.1265 0.0005
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Table 5.4: pT integrated v3 values (0.5–3.0 GeV/c) from two particle correla-
tion method in this analysis.

centrality int. v3 stat err
0–10% 0.0255 0.0005
10–20% 0.0321 0.0005
20–30% 0.0368 0.0006
30–40% 0.0401 0.0010
40–50% 0.0425 0.002
50–60% 0.0443 0.002

(0–10% or Npart ≈ 330). When pT increases, this scaling does seem to work.
The scaled v2 also increases with Npart. This is not exactly the same as we
see in [18] or Fig. 5.38. But a similar trend has been seen by [75], where the
scaling holds between Npart = 100 and 300.
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Figure 5.43: v2/ε2 vs pT in various centralities.
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Figure 5.44: v2/ε2 vs Npart in different pT bins.
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Figure 5.45: v3/ε3 vs pT in various centralities.
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Figure 5.46: v3/ε3 vs Npart in different pT bins.
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Chapter 6

Fourier Spectra and Jet Quenching

6.1 Introduction

The exotic structures of the ridge and shoulder are discussed in detail in
previous chapters, and several theories have been proposed to explain these
phenomena. One explanation is that these two structures have nothing to do
with jets, and are due to the presence of the third harmonic of collective flow,
v3 [67]. This v3 proposal has a natural appeal, since it provides three separate
peaks, and the peak location (∆φ = 0, 2π/3 and 4π/3 roughly correspond to
the locations of the ridge (∆φ = 0) and shoulder (∆φ ≈ π ± 1). Furthermore,
this explains the similarity of the pT spectra of the the ridge and shoulder and
the bulk. The question then is whether evidence for jet modification remains.

In this chapter, we use an approach which is different from the fitting
decomposition described in the previous chapter. We take the higher order
harmonics v3 and v4 measured by PHENIX [68] and include those in the
background subtraction, to have a better description of the shape of the back-
ground. Since those vn are Fourier coefficients of the underlying background,
we can further use the Fourier series of the correlation function to study the
jet modification and gain more insight.

To study what, if any, evidence remains of jet modification, we now mod-
ulate the uncorrelated background with higher harmonics beyond v2. After
subtracting this background, we study the jet function by Fourier analysis. In
the resulting Fourier spectra, all jet structures will be mixed together. There
is no way to separate the near and away side jets, ridge and shoulder using
the Fourier power spectra, so we compare to the power spectrum by Fourier
analysis of p+p collisions. In central Au+Au collisions, the situation is further
complicated by awayside jet quenching.

In order to understand the Fourier spectra in Au+Au, we make the fol-
lowing assumption. The correlation function in Au+Au can be separated into
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two parts: p+p–like jet structures and possible jet–medium interactions.
From both PHENIX [24] and STAR [58], we know that the near–side jet is

consistent with the nearside jet in p+p, with very little modification. We also
know that the awayside jet is suppressed in Au+Au. But the problem is that
we don’t really know the level of suppression of the awayside jet. To describe
the p+p like jet in Au+Au, we consider two extreme case scenarios. The first
is that the p+p like jet is unmodified in Au+Au. This can be represented by
the p+p jet correlation function, where there is no medium modification at
all. The second is that the awayside jet is fully quenched in the medium. To
mimic this situation, we set all points on the away side of the p+p jet function
to zero. This can be regarded as equivalent to fully quenching the away side
jet in Au+Au with no other structures present.

The true awayside jet in Au+Au should be in between these two cases.
When the Fourier spectra of the Au+Au correlation function is measured, the
spectra are compared with these two baselines. Any Fourier coefficients beyond
the description of these two cases must come from sources more complicated
than unmodified or fully absent jets.

6.2 Measuring the Fourier Coefficients of the

Correlation Function

6.2.1 Fourier Coefficients and Correlation Function

We transform the efficiency corrected jet functions from this analysis to
determine the Fourier spectra. We use the ∆η range from 0–0.7, which is
the full ∆η acceptance of the PHENIX. The reason for using this ∆η range,
instead of 0.5–0.7 is that this range includes the full near side jet, which is
important for studying jet physics.

First, we analyze the jet function obtained by subtracting out the under-
lying events modulated only by v2. The resulting jet function is expanded in
a Fourier series by the following:

J(∆φ) =
∑

Cn cos(n∆φ) (6.1)

The Fourier coefficients are measured from the zeroth term up to the ninth
term (C0 to C9 in Eq. 6.1). Fig. 6.1 and Fig. 6.2 compare the correlation
functions with the Fourier expansion results in various centralities. The 10
terms of Fourier expansion describe the data very well.
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Figure 6.1: Per trigger yield jet function of various centralities (black) are
compared with Fourier expansion results (red). Trigger pT = 2.0–3.0 GeV/c
and partner pT = 1.0–2.0 GeV/c
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Figure 6.2: Per trigger yield jet function of various centralities (black) are
compared with Fourier expansion results (red). Trigger pT = 2.0–3.0 GeV/c
and partner pT = 3.0–5.0 GeV/c
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6.2.2 Fourier Spectra of the Jet Function

Fig. 6.3 show the Fourier coefficients of jet function in various centralities
extracted from Fig. 6.1. The solid line in the figure is the Fourier spectrum
of pp jets. The green dashed line represents the case will fully quenching the
awayside of pp–like jets. In this case, we observed that for the even terms (C0,
C2, C4), the full pp jet has larger coefficients than the fully quenched awayside
pp–jet, since these even terms have peaks at ∆φ = π. On the other hand,
the odd terms (C1, C3) in the full pp jet are smaller than the fully quenched
awayside pp–jet, as these odd terms are negative at ∆φ = π. So jet quenching
itself will increase the value of odd harmonic components.

Next, we look at the centrality dependence. For the Fourier coefficients
larger than C5, the values are very small in all centralities, indicating lesser
importance of the higher harmonics.

The zeroth coefficient, C0, is equivalent to the total yield integrated over
2π. At low associated particle pT , where most central Au+Au collisions have
higher yield than pp. Consquently, C0 from Au+Au should exceed that for
p+p. This can be seen clearly in Fig. 6.1. When moving from central to
peripheral collisions, the total yield drops and approaches to the pp value.

The C1 value of the most central collisions is closer to the fully quenched
jet. With increasing centralities, C1 is approaching the full p+p jet. This is
consistent with the general picture that the more central the collision is, the
more the jet is quenched.

In C2, since we use ZYAM to remove most of the combinatorial background
in Au+Au, what is left in the jet function should contain a significant portion
of the jet. C2 is very similar to C2 observed in p+p collisions.

The third harmonic, C3, shows strong enhancement in central collisions.
The coefficients decrease with increasing centrality. It should be noted that,
as described above, fully quenched away side jets cause the magnitude of the
C3 to increase comparing to unmodified p+p jets. C3 in central collisions is
much larger than the expectation from jet quenching, which means that there
must be some other process causing an enhancement. A similar enhancement
is observed in the fourth harmonic, C4, but is less significant compared to C3.

In Fig. 6.4, where associated particle pT = 3 − 5 GeV/c, the situation is
a little bit different. The C0 term here is between that for full pp jets and
awayside quenched pp jets. We know there is a strong jet quenching in this
associated particle pT region. (See Fig. 6.2). For this region, the structures
from the medium effects such as ridge and shoulder are not strong, and the
distribution is mostly dominated by jet quenching. Nevertheless, we still see
some enhancement of C3 in the 0–20% and 20–40% centrality bins.
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Figure 6.3: Fourier spectra for various centrality in Au+Au collisions. Trigger
pT = 2.0–3.0 GeV/c and partner pT = 1.0–2.0 GeV/c, with v2 modulated
background shape subtracted.
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Figure 6.4: Fourier spectra for various centrality in Au+Au collisions. Trigger
pT = 2.0–3.0 GeV/c and partner pT = 3.0–5.0 GeV/c, with v2 modulated
background shape subtracted.

144



6.3 Background Subtraction with Modulations

from Higher Harmonics

From the previous chapter, we learned that there are higher harmonic
components of collective flow. PHENIX has measured vn with respect to ψn
for low pT particles arising from the flowing bulk, which forms the underlying
event for this analysis [68]. Those vn values are now used to better describe
the background shape in two particle correlations. The reason to use vn values
from [68] instead of vn from two particle correlation methods is to avoid the
non–flow contribution in vn when both particles are measured at mid–rapidity

To demonstrate the effect of higher harmonics in the underlying event,
we take the following steps. First we rescale the correlation function (with-
out background subtraction) so the y–axis is the per trigger yield. Then we
subtract out the flow background with the shape described by Eq. 6.2. The
background level, b0, is determined by absolute normalization (ABS) [76]. The
absolute normalization method assumes the level of the uncorrelated underly-
ing event pairs is proportional to the particle production rate of the trigger and
associated particles with a centrality dependent factor. Unlike ZYAM, ABS de-
termines the background level independent from the shape of the background,
which is important since we only change the shape, but not the level of the
background. We add vn one by one to Eq. 6.2, to see how each term changes
the shape of the subtracted correlation function. The correlation function is
then compared with the jet function in p+p, which represents the unmodified
jet–function. The last step is to measure the Fourier spectrum of the sub-
tracted Au+Au jet function, and compare to the Fourier spectra of the two
p+p baselines (unmodified and awayside fully quenched), thus allowing us to
quantify how the jet function is modified.

The full underlying event background shape is defined as

FL(∆φ) = b0(1 + 2c2 cos(2∆φ) + 2c3 cos(3∆φ) + 2c4 cos(4∆φ)) (6.2)

where
cn = vtrign (ψn)v

part
n (ψn) (6.3)

The details of how Eq. 6.2 is obtained are described in Appendix A. The
vn used here are from [68], as shown in Fig. 6.5. For this analysis, the trigger
particle is inclusive photons with pT at 2–3 GeV/c, which is mainly the π0

decay photon. The parent π0 mean pT is about 2.6 GeV/c, so as a proxy, we
use the inclusive charged hadron at 2.5–3.0 GeV/c as a proxy for the inclusive
photon v3 and v4.
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Figure 6.5: Measurements of v2, v3, v4 with respect to ψn from [68].
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We use Fig. 6.6 as an example of the result of the background subtraction.
Inclusive photon triggers at 2–3 GeV/c are associated with inclusive charged
hadron at 1–2 GeV/c. The centrality is 0–20%. The left column includes v2
modulation of the background shape; the middle column is modulated by v2
and v3, and right column is v2, v3 and v4. Adding in background vn one by
one shows the effect of each vn.

The left column uses the standard v2 modulated background only. The
first row shows the per trigger yield Au+Au correlation function, with the blue
curve representing the underlying event background to be subtracted. Using
Eq. 6.5, the jet function is calculated and plotted in the second row as black
points. The red points are the p+p correlation function as a reference. With v2
modulated background subtraction, the double peak structure is clearly seen.
The third row shows the Fourier spectra of the Au+Au jet function (plotted
in black points) and compared with the two different p+p cases. The solid red
line represents the unmodified p+p and red dashed line represents p+p with
awayside jets fully quenched.

Moving to the second column, v3 modulation is included in the background.
The top panel shows that the background function has a different shape com-
pared to the v2 only case. The jet function after subtraction in the second row
shows that the double peak structure is significantly reduced, and there is a
pedestal under the jet correlation function. This should be expected, since add
in those terms modulating the background function leave the total jet yield,
re[resemted bu C + 0 imcjamged/ Ot os pm;u tje sja[e pf tje ket fimctopm
wjocj cjages/

The Fourier spectrum in the third row shows that the third harmonic in
the jet function is significantly reduced, which is not surprising since we now
include v3 in the flow background. As a crosscheck, the C0 term in both
cases (v2 and v2 + v3) are the same, which is because adding in another vn
contribution in Eq. 6.2 will only change the shape of the jet function, not the
total yield integrated over 2π.

In the right column of Fig. 6.6, we also include the v4 modulation. The
subtracted jet function in the second panel does not have a clear double peak
structure. It looks more like a broadened and suppressed jet sitting on a flat
pedestal.

The pedestal structure can be understood as follows. In all three different
background cases shown in Fig. 6.6, the background level, b0, is fixed to the
same value determined by absolute normalization. Since add in extra vn terms
do not change the total background, but only changes the shape, this means
the total yield of the jet function is also the same with different vn background
shape. This is verified in the Fourier spectra that C0 is the same in all three
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cases. Since the yield does not change, but the shape of the jet function does,
the enhancement seen as ridge and shoulder for background with v2 only is
redistributed when higher harmonics are included in the background. This
redistribution of the extra yield recovers the ridge and shoulder and leads to
the pedestals seen in the second and third columns of Fig. 6.6.

6.4 Motivation and Verification of the p+p

reference

From the standard two particle correlation analysis, we know that the
correlation function can be written as

CF (∆φ) = JF (∆φ) + FL(∆φ) (6.4)

or we can rewrite Eq. 6.4 as

JF (∆φ) = CF (∆φ)− FL(∆φ) (6.5)

We assume after removing the flowing background contributions, FL(∆φ)
in Eq. 6.5, what’s left should resemble a p+p–like jet. This is inspired by the
high pT correlation function studies from PHENIX [23] and [24].

In the previous sections, we use unmodified p+p jets and awayside fully
quenched p+p jets as two baselines. We claim that the Fourier spectra of any
awayside–modified p+p like jets should lie in between the Fourier spectra of
these two baselines. We tested several scenarios of jet modifications to see if the
claim holds. In Fig. 6.7, several scenarios are illustrated. We have black(red)
curves which represented the unmodified (awayside fully quenched) p+p jet.
The Fourier spectra are plotted in the right hand side with the same color.
We then varied the shape and yield of awayside jet. The first case is shown in
green where the width of the awayside is unchanged, but the awayside yield is
suppressed by 0.5. In the second case, the yield of the awayside is unchanged,
but the width is broadened by 50%, which is shown in blue. The last case has
awayside width broadened by 50% and yield suppressed by 50%, plotted in
yellow.

The right hand side of Fig. 6.7 show that the Fourier spectra of the three
jet scenarios all fall between the black and red points, thus support the use
of these two extreme cases for comparison with Au+Au which are the two
extreme case we used here. The awayside fully quenched case can be thought
of as an awayside jet that is extremely broad. As visible in blue, even if the
awayside yield is unchanged, once the width is broader, the Fourier spectrum
starts to approach the fully quenched awayside case.
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6.5 Au+Au Compared with p+p

In this section, we start with the Fourier spectra and see the effect in the
vn subtraction.

To study the vn effect, we first transform all the correlation functions in
Eq. 6.4 in to Fourier spectra, say

CF (∆φ) = ΣCCF
n cos(n∆φ) (6.6)

FL(∆φ) = ΣCFL
n cos(n∆φ) (6.7)

JF (∆φ) = ΣCJF
n cos(n∆φ) (6.8)

So for each Fourier coefficient, Cn, Eq. 6.4 can be written to be as

CCF
n = CFL

n + CJF
n (6.9)

or we can rearrange the equation

CJF
n = CCF

n − CFL
n (6.10)
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From Eq. 6.2, we only use v2, v3, and v4 and a constant term in the flow
underlying background. When doing the subtraction shown in Eq. 6.10, only
C0, C2, C3, C4 will be modified. The rest of the harmonics are untouched.

After we did the subtraction, we compare Cn in Au+Au with the corre-
sponding term Cn from the two p+p reference baseline. If after vn background
subtraction, what’s left in Au+Au falls in between the two p+p reference,
we can assume the jet component left in Au+Au should be a ”p+p–like jet
shape”. If what’s left is beyond the two p+p reference, then this will indicate
some extra contributions other than the bulk and jet contribution exists.

Fig. 6.8 is the C0 term. C0 corresponds to the total per trigger yield in-
tegrated over 2π. We see all the Au+Au points are significantly above the
p+p reference lines here. This is not surprising since we know at low partner
pT , there are more particles in Au+Au than in p+p, as seen in this analysis
and reported by PHENIX earlier [23]. This extra yield was originally the
ridge and shoulder, these structures are no longer observed. Nevertheless, the
total particle yield in Au+Au correlations is higher than the totally uncorre-
lated underlying events (which is determined by absolute normalization) and
unmodified jet can provide

In Fig. 6.9, after removing the uncorrelated v2 terms from the underlying
event, the remaining C2 due to jets in Au+Au lies in between the two p+p
references. This suggests that C2 in Au+Au can be explained by the p+p like
jet; for C2, there is only bulk and jet.

In Fig. 6.10, the C3 the central values still fall between the two p+p refer-
ences, but the systematic error bar is large enough to cover the two references.
curves. This plot suggests that the third harmonic could be described by the
bulk v3 and the normal jet contribution only. If this is true, then the three
peak structure (ridge plus two shoulders) is due to the bulk v3, since after
subtraction, only the jet–like structure remains.

The v4 case, shown Fig. 6.11, is different. We applied v4 obtained [68] and
the result is surprising. Unlike Fig. 6.9 and Fig. 6.10, all the Au+Au points are
below the p+p references, and are consistent with 0, except for the associated
particle pT = 3–5 GeV/c. This is very surprising, since if C4 is consistent with
0, then it indicates that the bulk v4 describe everything in Au+Au collisions,
and the jet component has no contribution to the fourth harmonic at all. We
don’t have good explanation for this at this moment.
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Chapter 7

Discussion

7.1 QGP: the Most Perfect Fluid

When the two nuclei undergo non–central collisions, or have a nonzero
impact parameter, b, the colliding area forms an almond shape. This hot dense
region equilibrates, expands and cools, and numerous particles are produced.
The pattern of the particle emission depends on the mean free path of the
particles, l, and the the size of the system, R. When l is not much smaller
than R, the emission pattern can be assumed to be the superposition of many
nucleon–nucleon collisions, which are azimuthally isotropic. When l ≪ R,
then the behavior of a system in equilibrium can be described by relativistic
hydrodynamics, and the emission pattern is mainly influenced by the shape of
the system.

When system is locally thermalized, as described in Chapter 1.3, the system
can be described by hydrodynamics. When the system expands, the particles
flow collectively. This flow is due to the pressure gradients in the system. In
the almond shape colliding area, the pressure should to be the greatest at the
short direction, which is along the impact parameter.

As a result, we can measure the angular distribution of particles with re-
spect to the event plane as:

dN

dφ
∝ 1 +

∑

(2vn cosn(φ− ψn)) (7.1)

The Fourier coefficients, vn, can provide a lot of information on the properties
of quark–gluon plasma, and can be compared with hydrodynamical calcula-
tions.
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7.1.1 v2 and Geometry

PHENIX measured v2 in Au+Au and Cu+Cu collisions [18]. The v2 of
inclusive charged hadrons is measured as a function of pT , as shown in Fig. 7.1.
In Fig. 7.1 (a) and (b), v2 increases from central to mid–central collisions, in
parallel with the increased geometrical anisotropy. The v2 increases with pT
up to 3 GeV/c and then appears to saturate.

Cu+Cu is a smaller system than Au+Au. When both systems have a
similar number of participants during the collision, the two may have different
geometric shapes. In order to remove the geometrical effect of the system, the
v2 is normalized by the eccentricity, ε. Since pT integrated v2 is assumed to
be proportional to the eccentricity of the system, it can be used as a proxy of
eccentricity [18].

After normalizing by eccentricity (or the pT integrated v2), all v2 values
fall along a universal curve, independent of the colliding system and centrality
as shown in Fig. 7.1 (c). This implies that the expansion of the system is
universal, and suggests a rapid thermalization of the system at the partonic
level [77, 78].

7.1.2 v2 and Quark Number Scaling

v2 as a function of pT for different particle species are shown in Fig. 7.2
(a) [18]. v2 of identified particles fall into two groups: mesons and baryons.
At pT < 2 GeV/c, v2 of the mesons is larger than for baryons. At pT > 2
GeV/c, the v2 of mesons begins to saturate while the v2 of baryons continues
increasing and shows some signs of saturation at 3 GeV/c. Fig. 7.2 (b) is the
same data, but plotted vs transverse kinetic energy, KET , where KET = mT

- m. KET takes into account relativistic effects and the particle mass, and is
a better way to check scaling with the energy. We see that all mesons line up
together, as do the baryons.

We can take a step further and plot the v2 per valence quark:

vmeson2 (pT ) = 2vquark2 (pT/2) (7.2)

vbaryon2 (pT ) = 3vquark2 (pT/3) (7.3)

Fig. 7.3 shows the v2/nq vs pT/nq or KET /nq scaling. After scaling by number
of quarks, where nq = 2 for mesons and 3 for baryons, v2/nq vs KET/nq of
all particles align together and show a universal trend, visible in Fig. 7.3 (b).
On the other hand, Fig. 7.3a, which is plotted vs pT , does not show similar
scaling properties. The fact that the flow scales with the quark content rather

158



2v

0

0.1

0.2

0-10%
10-20%
20-30%
30-40%
40-50%

Au+Au (a)

2v

0

0.05

0.1

0.15
0-10%
10-20%
20-30%
30-40%

Cu+Cu (b)

 (GeV/c)Tp
0 1 2 3 4

(c
en

tr
al

ity
)

2v
×k

,c
en

tr
al

ity
)

T
(p 2v

0

0.2

0.4

0.6

0.8
(c)

Figure 7.1: v2 measurement in (a)Au+Au; (b)Cu+Cu; (c)v2 scaled with pT
integrated v2 [18]

159



than the mass of the hadrons, suggests that quarks are the relevant degrees
of freedom when the pressure gradients are built up. The magnitude of v2
implies that the collective flow is built up very quickly, before the expansion
of the system restores geometrical symmetry.

RHIC Energies
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Figure 7.2: (a) v2 vs pT and (b) v2 vs KET of identified charged hadrons in
min–bias Au+Au collisions [18]. STAR data from [79, 80]

7.1.3 How Perfect is QGP? Extracting η/s

The significant flow, v2, observed indicates the system expands collectively,
and that it thermalized rapidly [77, 78]. This is can be described by the
relativistic hydrodynamics. But by assuming the system as perfect fluid, where
there is no viscosity, the hydrodynamic models predict a stronger v2 than
data [17]. Earlier calculations indicates that by introducing small but nonzero
viscosity to the system, it can reduce the v2 [81]

When using relativistic hydrodynamics to calculate v2, several parameters
are necessary: the thermalization time, τ0, where the hydrodynamics starts;
τf , where the hydrodynamics stops; the initial state of the system when hy-
drodynamics starts. Here we focus on the initial state of the collision. There
are two kinds of initial conditions. One is the Glauber model, which assumes
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pT/nq and (b) v2/nq vs KET /nq [18]. STAR data from [79, 80]
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that the nuclei consist of individual nucleons with nucleons distributed accord-
ing to Woods–Saxen function. The other model is the Color Glass Condensate
(CGC), which assumes that in the nuclei, the density of gluons is saturated. So
the initial condition is determined by the gluon distribution inside the nuclei.

If the QGP behaves like a liquid, this raises the question of what the shear
viscosity of this liquid might be. The shear viscosity, η, is the property of
the liquid which describes the energy dissipation. The larger the viscosity, the
easier energy gets lost. For perfect liquid, the shear viscosity is zero, which
means energy can go through the medium without any dissipation.

But the QGP is not a normal ”liquid”. It has a high temperature, consists
of quarks and gluons, and the interaction is described by QCD. With Anti–di–
Sitter/Conformal Field Theory (AdS/CFT), people can transform the strong
coupling problem into a 5–dimensional gravity dual, where the strong–coupled
field theory is approximated as a gravitational field near a black hole. By this
AdS/CFT correspondence, people calculate that there is a minimum value for
the ratio of the shear viscosity over the entropy density, which is given by [82]

η

s
=

1

4π
(7.4)

Eq. 7.4 tells us that there is a universal lower bound of the ratio η/s. Even
though the ratio of η/s has a lower bound, the viscosity of the quark gluon
plasma could still be large. So it is an important experimental goal to measure
it.

Fig. 7.4(a) and Fig. 7.4(b) compare relativistic hydrodynamical calcula-
tions for v2 with two different initial conditions, Glauber and CGC [83]. The
v2 data is from STAR [84]. The calculations show that if the viscosity to
entropy ratio is zero, which is the case for a perfect fluid, both initial states
over–estimate the measured v2 values.

Further calculations assume different values of η/s, from 0.08 (1/4π) to
0.24. The effect of the viscosity brings the calculated v2 down. The most in-
teresting aspect of Fig. 7.4(a) and Fig. 7.4(b) is that with some finite viscosity,
both Glauber and CGC describe the v2 trend equally well. For the Glauber
initial state, the best value is η/s = 1/4π, while η/s = 2/4π for the CGC
initial state.

From these calculations, we know that the QGP has a small but finite
η/s, which is close to the value of the universal lower bound of a quantum
system, η/s = 1/4π. Also, depending on the assumptions of different initial
states, Glauber or CGC, the value of η/s is different. A key issue over the
past several years has been how to remove this degeneracy with additional
experimental information.
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7.1.4 Further Constraints on η/s: vn

To further constrain η/s, we need more parameters. The two different
initial states (Glauber and CGC) give different values for η/s when compared
with v2. Comparing hydrodynamic calculations to higher harmonics (n > 2)
will provide additional constraints to distinguish between models and initial
conditions.

Fig. 7.5 compares the v2{ψ2} and v3{ψ3} as a function of Npart with several
theoretical calculations [72, 74, 70]. Alver et al. [72] assumed an energy profile
using two initial conditions, Glauber and MC–KLN. The Glauber initial state
condition was described previously in section 5.8, the energy profile is described
by a Woods–Saxon function. MC–KLN [85, 86] is a particular implementation
of the Color Glass Condensate, where the energy density is determined by
gluon density in the transverse plane. The gluon density peaks at the center of
the nuclei and decreases at the edge of the nuclei. Fluctuations are introduced
in both initial conditions. These two initial conditions are paired with different
η/s values: η/s = 1/4π for Glauber and 2/4π MC–KLN respectively, as the
two combinations describe v2 equally well. Petersen et al. [74] starts with
Glauber initial conditions. Then the interaction is simulated by the Lund
model [87] followed by fragmentation of color tubes, which is also known
as the UrQMD transport model [9, 10]. The results are evolved with ideal
hydrodynamics (η/s = 0) event–by–event. At late hadron cascade stage when
the system is dilute, the system is gradually transit from hydrodynamics to
transport model. B. Schenke et al. [70] use event–by–event Glauber initial
conditions to fully account for fluctuations in the initial positions of nucleons
in the Au nuclei, and then evolves the medium with 3+1 dimensional viscous
hydrodynamics, where several values of η/s have been used.

All models are compared with v2{ψ2} and v3{ψ3}. All calculations describe
v2{ψ2} very well at pT = 0.75 GeV/c as shown in Fig. 7.5(a). At pT = 1.75
GeV/c, the MC–KLN calculation (red points) does not describe the data well
at low Npart.

For v3{ψ3} at pT = 0.75 GeV/c, shown in Fig. 7.5(c) and (d), all calcula-
tions with Glauber initial conditions show good agreement with data. How-
ever, the MC–KLN calculation (red points) are significantly below the data.
The deviation is even larger at higher pT . By contrast, models with Glauber
initial conditions with η/s = 1/4π still describe the data relatively well. This
shows the constraining power of v3 to differentiate among the models.
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7.2 vn in Two Particle Correlation: the Ridge

and Shoulder

7.2.1 The Ridge and Shoulder with v2–modulated Back-

ground Subtraction

With v2–modulated underlying event background subtraction in the two
particle correlation analysis, the novel structures of the ridge and shoulder
are studied extensively in Chapter 4. Both the ridge and shoulder have some
properties in common. Both yields strongly depend on the size of the medium
and the yield increases with the size of the system. The spectra and trun-
cated mean pT show that both the ridge and shoulder are much softer than
jets in p+p collisions. This tells us that neither the ridge nor the shoulder
arise directly from hard scattering. The truncated mean pT of the ridge and
shoulder are closer to the bulk, which indicates that the origin of both should
be related to the medium. The truncated mean pT of the ridge and shoulder
are also consistent with one another across various centralities, hinting that
the mechanism for producing the ridge and shoulder is independent from the
size of the medium.
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Both the ridge and shoulder have inspired several theoretical explanations.
Most of these theories treat the two phenomena separately. There are several
physical pictures proposed to explain the production of the ridge: Jet–medium
interactions may result in a momentum kick to particles in the bulk medium,
boosting their momentum and producing a correlation with a traversing fast
parton [38]. A correlated emission model describes radiation of soft gluons by
a parton penetrating the medium; these gluons and their resulting hadronic
fragments are boosted by longitudinal flow of the medium [39]. The Glasma
model treats the ridge as arising from the flux tube formed early in the collision;
longitudinal expansion elongates the ridge in η [40].

The shoulder structure has been suggested to arise from passage of a sound
wave as the medium responds to shocks deposited by jet energy loss [41, 42, 43].
However, there is considerable debate as to whether it is possible to observe
the resulting Mach cone–like structure [44, 45].

7.2.2 The Ridge, Shoulder and Higher Order vn Back-

ground Modulation

The idea of non–zero odd harmonics, especially v3, changes the picture
for the ridge and shoulder [67]. After higher harmonics are measured using a
reaction plane defined at large η [68], we have a better way to describe the
shape of the underlying event background.

After subtracting the underlying event, including the modulation of higher
harmonics, from two particle correlations, both the ridge and shoulder disap-
pear, as shown in Fig. 6.6. Instead of the ridge and shoulder, the jet function
looks like a di–jet with a suppressed and possibly broadened awayside on top
of a flat pedestal.

Fourier coefficients, Cn with n > 0, as defined in Eq. 6.1, are used to
describe the shape of the correlation function. After subtracting backgrounds
with higher harmonic modulations, the Fourier coefficient of the corresponding
harmonics in Au+Au is consistent with the sum of a jet–like structure and the
medium, as shown in Fig. 6.9, Fig. 6.10 and Fig. 6.11.

This tells us that the correlation function can be mostly described by the
medium and jets. In other words, the ridge and shoulder arose because we
did not consider the background shape correctly. However, vn is a shape
parameter. When integrated over 2π, the vn cosn∆φ term is zero, which means
vn changes the shape of the background, but not the absolute background level.
In Fig. 6.6, the background level is fixed using the absolute normalizations [76].
This is a crucial step, because we calculate explicitly the background level of
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the ”totally uncorrelated” underlying background pairs. No matter how many
vn we include in the subtraction, the background level never changes.

This makes Fig. 6.8 an important result. Fig. 6.8 describes the total yield
of the correlation function in Au+Au. At low partner pT , the total yield in
Au+Au is larger than in p+p collisions. This tells us that this extra yield
comes neither from the uncorrelated background pairs nor from the jets.

Even though Fig. 6.8 shows that there is significant yield which is not from
jets or the underlying event, we cannot separate this extra yield from the jets.
The reason is that the awayside jet is suppressed, and we cannot tell the exact
level of suppression. However, we can use studies of the ridge and shoulder
shown in Fig. 4.19 to represent the extra yield or the pedestal. The general
trend of the ridge and shoulder yields is an increase with Npart. In Fig. 4.28,
the truncated mean pT of the ridge and shoulder are roughly consistent with
each other. So we know the truncated mean pT of the pedestal, which should
be the sum of the ridge and shoulder, and should be the same as the ridge and
shoulder. This tells us the pedestal is slightly harder than the bulk, but softer
then the hard scattering components, indicating that the source of this extra
yield may come from some jet–medium interaction, which gives the medium
extra energy and makes the truncated mean pT slightly larger than the bulk
medium.

7.2.3 Ridge, Shoulder and the Energy Loss

If the yields in the ridge and shoulder are coming from extra energy de-
posited in the medium, a natural question is where this energy comes from?
One possible source is from the energy loss of the awayside jet.

In Fig. 4.13, we extract the yield of the awayside jet via the fitting method.
It is clearly shown that the head region, or the awayside jet yield, is suppressed
compared to p+p. This jet suppression is seen in all partner pT bins. At the
same time, the yield in the shoulder region increases while the head region is
suppressed. Qualitatively, this is consistent with the idea of energy or momen-
tum conservation, where the energy lost in the head region is recovered in the
shoulder region.

However further studies do not agree with this simple assumption. We use
pT weighted yields to describe the momentum in all the components, which is
shown in Fig. 4.25 and Fig. 4.26. In Fig. 4.26, the pT of the associated particles
is 1–5 GeV/c. Conservation of momentum tells us that the momentum lost by
the high pT associated particles must be recovered as low pT particles. What
we see in Fig. 4.26 is that the momentum carried by the near and awayside
are both larger than the p+p case. But the increase of the nearside is much
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larger than the increase of the awayside, indicating a momentum imbalance.
Thus, conservation of momentum does not hold, and the observed increase in
yield must come from a mechanism as yet unknown.
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Part V

Conclusion
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Chapter 8

Conclusion

Inclusive photon-inclusive charged hadron ∆η-∆φ correlations have been
measured. The underlying event background has been removed in order to
study the properties of the jet pairs. When subtracting the background pairs
with v2 only modulations, exotic structures have been found in both the near
side, the “ridge”, and the away side, the “shoulder”. The properties of the
“ridge” and “shoulder” are very similar to one another in yield, spectra and
truncated mean pT . The truncated mean pT of the ridge and shoulder are
both softer than jet fragments in p+p collisions, and are slightly harder than
inclusive charged hadrons. This indicates these two structures may come from
some jet-medium interactions.

In order to study the effect of higher harmonics of the underlying event
collective flow, higher harmonics have been measured using two methods: the
reaction plane method and the two particle correlation method. The new
measurement of higher harmonics provides two key pieces of physics. The first
is an additional constraint in quantifying the viscosity, or η/s, of the quark-
gluon plasma. When using v2 to quantify η/s, both Glauber and CGC initial
state conditions describe the data well, but each correspond to a different η/s:
η/s = 1/4π for Glauber and 2/4π for CGC. With v3, the data favors Glauber
initial state with η/s = 1/4π.

The second impact of quantifying the higher harmonics is the impact of
including them in the underlying event shape. Including higher harmonics
in the subtraction of background under the jet function cause the “ridge”
and “shoulder” disappear. The resulting jet function does show away side jet
suppression and broadening.

There is extra yield observed as a pedestal in the jet functions when in-
cluding the higher harmonic contributions. Since including higher harmonics
do not change the yield, the source of the pedestal is mostly coming from
particles originally assigned to the ridge and shoulder when consider only v2
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modulations in the shape of the background.
In conclusion, when jets pass through the medium, the away side jet is

suppressed and the shape is broadened. This also brings out extra particles
with spectra slightly harder than the medium, but softer than jet fragments.
These are probably from the jet-medium interaction.
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Appendix A

Flow background shape

A.1 Introduction

In two particle correlations, in order to extract the underlying flow back-
ground, it is important to understand the shape of the flow background. We
know the single particle azimuthal distribution can be written as Eq. A.1

dN

dφ
=
N

2π
(1 + 2Σvn cosn(φ− ψn)) (A.1)

, where vn is the n-th order of anisotropy measured respect to ψn, the n-th
order of event plane.

Originally, we only consider the simpler form where only the v2 term exists
as

dN

dφ
=
N

2π
(1 + 2v2 cos 2(φ− ψ2)) (A.2)

and the particle pair distribution will be like Eq. A.3

dNAB

d∆φ
=
NANB

2π

(

1 + 2vA2 v
B
2 cos(2∆φ)

)

(A.3)

In reference [68], we know v2, v3 and v4 all have significant contributions.
It is important to consider their contribution in the pair distribution. What
we try to do here is start with a more general Eq. A.1, and then derive the
generalized Eq. A.3.
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A.2 Derivation

For single particle distribution, we have the following expression Eq. A.4
and Eq. A.5 (only show v2 and v3, but without losing the generality):

dNA

dφ
=
NA

2π

(

1 + 2vA2 cos 2(φ− ψ2) + 2vA3 cos 3(φ− ψ3)
)

(A.4)

dNB

dφ
=
NB

2π

(

1 + 2vB2 cos 2(φ− ψ2) + 2vB3 cos 3(φ− ψ3)
)

(A.5)

so when integrated Eq. A.4 over 2π, we have

∫ 2π

0

dNA

dφ
dφ

=
NA

2π

∫ 2π

0

(

1 + 2vA2 cos 2(φ− ψ2) + 2vA3 cos 3(φ− ψ3)
)

dφ

=
NA

2π
2π (A.6)

= NA (A.7)

which gives us the total multiplicity NA.
For particles A and B distributed as Eq. A.4 and Eq. A.5, the pair dis-

tribution, dNAB

d∆φ
, where ∆φ = φB − φA or φB = φA + ∆φ, can be written as

Eq. A.8

dNAB

d∆φ
=

∫ 2π

0

dφA
dNA

dφA
dNB

dφB
(A.8)

So here we explicitly calculate Eq. A.8:
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dNAB

d∆φ

=

∫ 2π

0

dφA
dNA

dφA
dNB

dφB

=

∫ 2π

0

dφA
(

NA

2π
(1 + 2vA2 cos 2(φA − ψ2) + 2vA3 cos 3(φA − ψ3)

)

(

NB

2π
(1 + 2vB2 cos 2(φB − ψ2) + 2vB3 cos 3(φB − ψ3))

)

=
NA

2π

NB

2π

∫ 2π

0

dφA
(

1 + 2vA2 cos 2(φA − ψ2) + 2vA3 cos 3(φA − ψ3)
)

(

1 + 2vB2 cos 2(φA +∆φ − ψ2) + 2vB3 cos 3(φA +∆φ− ψ3)
)

=
NA

2π

NB

2π

∫ 2π

0

dφA(1 + 2vA2 cos 2(φA − ψ2)

+2vA3 cos 3(φA − ψ3)

+2vB2 cos 2(φA +∆φ− ψ2)

+2vB3 cos 3(φA +∆φ− ψ3)

+4vA2 v
B
2 cos 2(φA − ψ2) cos 2(φ

A +∆φ− ψ2)

+4vA2 v
B
3 cos 2(φA − ψ2) cos 3(φ

A +∆φ− ψ2)

+4vA3 v
B
2 cos 3(φA − ψ2) cos 2(φ

A +∆φ− ψ2)

+4vA3 v
B
3 cos 3(φA − ψ2) cos 3(φ

A +∆φ− ψ2))

(A.9)

We now integrate Eq. A.9 term by term:

∫ 2π

0

1dφA = 2π

∫ 2π

0

2vA2 cos 2(φA − ψ2)dφ
A = 2vA2 × 0 = 0

∫ 2π

0

2vA3 cos 3(φA − ψ3)dφ
A = 2vA3 × 0 = 0
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∫ 2π

0

2vB2 cos 2(φA +∆φ− ψ2)dφ
A = 2vB2 × 0 = 0

∫ 2π

0

2vB3 cos 3(φA +∆φ− ψ3)dφ
A = 2vB3 × 0 = 0

∫ 2π

0

4vA2 v
B
2 cos 2(φA − ψ2) cos 2(φ

A +∆φ− ψ2)dφ
A

= 4vA2 v
B
2

∫ 2π

0

dφA
1

2

[

cos(4φA − 4ψ2 + 2∆φ) + cos(2∆φ)
]

= 4vA2 v
B
2 (

1

2
) (0 + 2π cos(2∆φ))

= 4πvA2 v
B
2 cos(2∆φ) (A.10)

∫ 2π

0

4vA3 v
B
3 cos 3(φA − ψ3) cos 3(φ

A +∆φ− ψ3)dφ
A

= 4πvA3 v
B
3 cos(3∆φ) (A.11)

∫ 2π

0

4vA2 v
B
3 cos 2(φA − ψ2) cos 3(φ

A +∆φ− ψ3)dφ
A

= 4vA2 v
B
3

∫ 2π

0

dφA
1

2
[(cos(5φA − 2ψ2 + 3∆φ− 3ψ3)

+ cos(−φA − 2ψ2 − 3∆φ+ 3ψ3)]

= 4vA2 v
B
3 (

1

2
)(0 + 0))

= 0 (A.12)

∫ 2π

0

4vA3 v
B
2 cos 3(φA − ψ3) cos 2(φ

A +∆φ− ψ2)dφ
A = 0 (A.13)

181



so the final result of Eq. A.9 is

dNAB

d∆φ

=

∫ 2π

0

dφA
dNA

dφA
dNB

dφB

=
NA

2π

NB

2π
(2π + 0 + 0 + 0 + 0 + 4πvA2 v

B
2 cos(2∆φ) + 0 + 0 + 4πvA3 v

B
3 cos(3∆φ))

=
NANB

2π
(1 + 2vA2 v

B
2 cos(2∆φ) + 2vA3 v

B
3 cos(3∆φ)) (A.14)

To check the final pair distribution, we integrate Eq. A.14 over 2π, then
we have

∫ 2π

0

dNAB

d∆φ
d(∆φ)

=

∫ 2π

0

NANB

2π

(

1 + 2vA2 v
B
2 cos(2∆φ) + 2vA3 v

B
3 cos(3∆φ)

)

d(∆φ)

=
NANB

2π
(2π)

= NANB (A.15)

which is exactly what we expect when we have two complete un-correlate
particles A and B.

For a generalized form of Eq. A.14, we have

dNAB

d∆φ

=
NANB

2π
(1 + Σ2vAn v

B
n cos(n∆φ)) (A.16)

especially in the case we have v2, v3, v4, Eq. A.16 become

dNAB

d∆φ

=
NANB

2π
(1 + 2vA2 v

B
2 cos(2∆φ) + 2vA3 v

B
3 cos(3∆φ) + 2vA4 v

B
4 cos(4∆φ))(A.17)
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